Triangle ABC

is reflected across the x
-axis. If the coordinates of the original shape are A(−4,−1)
, B(−5,−2)
, and C(−10,−1)
, what are the coordinates of A′
, B′
, and C′
?(1 point)
Responses

A′(−4,1)
, B′(−5,2)
, and C′(−10,1)

A′(−4,1)
, B′(5,−2)
, and C′(−10,1)

A′(4,−1)
, B′(5,−2)
, and C′(10,−1)

A′(4,1)
, B′(5,2)
, and C′(10,1)

1 answer

When a point \((x, y)\) is reflected across the x-axis, the y-coordinate changes sign, while the x-coordinate remains the same. Therefore, the reflection of point A(-4, -1) would be A'(-4, 1), the reflection of point B(-5, -2) would be B'(-5, 2), and the reflection of point C(-10, -1) would be C'(-10, 1).

So the coordinates of the reflected triangle A', B', and C' are:

A'(−4, 1), B'(−5, 2), and C'(−10, 1).

Thus, the correct response is: A′(−4,1), B′(−5,2), and C′(−10,1).