The letter tiles C, A, R, E, S r placed in a box. without looking, Jorelle picks a letter tile from d box n records da result b4 placing it bcl. if he repeats da procedure 100 times, how many times will da will da letter A tile b picked?

1 answer

To find the expected number of times Jorelle will pick the letter A tile, we can first determine the probability of picking the A tile in a single draw from the box.

The letters in the box are C, A, R, E, and S. So there are 5 letter tiles in total.

The probability of picking the A tile in one draw is:

\[ P(A) = \frac{\text{Number of A tiles}}{\text{Total number of tiles}} = \frac{1}{5} \]

Jorelle is picking tiles 100 times. We can use the expected value to find the expected number of times the letter A will be picked:

\[ \text{Expected number of A tiles picked} = P(A) \times \text{Number of draws} = \frac{1}{5} \times 100 = 20 \]

Thus, Jorelle is expected to pick the letter A tile 20 times in 100 draws.