Lenny wrote a paragraph proof of the Perpendicular Bisector Theorem. What mistake did Lenny make in his proof?

HK¯¯¯¯¯¯¯¯¯
is a perpendicular bisector of IJ¯¯¯¯¯¯
, and L is the midpoint of IJ¯¯¯¯¯¯
. M is a point on the perpendicular bisector, HK¯¯¯¯¯¯¯¯¯
. By the definition of a perpendicular bisector, I know that IM¯¯¯¯¯¯¯¯≅JM¯¯¯¯¯¯¯¯
. By the definition of a perpendicular bisector, I also know that ∠MLI
and ∠MLJ
are right angles. ∠MLI≅∠MLJ
because of the Right Angle Congruence Theorem. I can also say that ML¯¯¯¯¯¯¯¯¯≅ML¯¯¯¯¯¯¯¯¯
by the Reflexive Property of Congruence. With this information, I know that △MLI≅△MLJ
by the SAS Congruence Theorem. Since the triangles are congruent, the CPCTC Theorem allows me to know that IL¯¯¯¯¯¯≅JL¯¯¯¯¯¯¯
. Knowing that these segments are congruent proves the Perpendicular Bisector Theorem.

(1 point)
Responses

The definition of a perpendicular bisector tells you that IL¯¯¯¯¯¯≅JL¯¯¯¯¯¯¯
, not that IM¯¯¯¯¯¯¯¯≅JM¯¯¯¯¯¯¯¯
.
The definition of a perpendicular bisector tells you that line segment cap i liters is congruent to line segment cap j liters, not that line segment cap i cap m is congruent to line segment cap j cap m.

The SAS Congruence Theorem tells you that △MLI≅△JLM
, not that △MLI≅△MLJ
.
The SAS Congruence Theorem tells you that △MLI≅△JLM
, not that △MLI≅△MLJ
.

The definition of a perpendicular bisector tells you that∠LMI
and ∠LMJ
are right angles, not that ∠MLI
and ∠MLJ
are right angles.
The definition of a perpendicular bisector tells you that ∠LMI
and ∠LMJ
are right angles, not that ∠MLI
and ∠MLJ
are right angles.

Lenny did not make a mistake. His proof is correct.

1 answer

The mistake Lenny made in his proof is:

The definition of a perpendicular bisector tells you that line segment \(IL\) is congruent to line segment \(JL\), not that line segment \(IM\) is congruent to line segment \(JM\).

This mistake occurs because Lenny incorrectly states that the segments \(IM\) and \(JM\) are congruent as a result of the perpendicular bisector. Instead, the definition of the perpendicular bisector states that it bisects the segment \(IJ\) at \(L\), implying that \(IL\) is congruent to \(JL\). Lenny's proof should have focused on the relationship between the points \(L\), \(I\), and \(J\) rather than incorrectly applying congruence to segments involving point \(M\).