Asked by John
                Rate of change proportional to size:
P(t)= P(i)e^kt, where P is population, t is time, k is a constant and P(i) is the initial p or "p naught"; sorry, I don't know the typed notation for subscript. By the way, p(i) is given as 100.
The problems are
a.) "Find the expression after t hours"
b.) "Find the number of bacteria after t hours."
The answer to a is(via back of the book) is: 100(4.2)^t
I'm not sure exactly how to get there though I believe it has to do with taking natural logarithms and solving for e^k but since p is a function of t I'm not sure how to differentiate "k" (treat it as a constant or differentiate implicitly). If you could show the step by step process I'd appreciate it.
I got to: p(t)= 100(e^t+e^k) and stalled out.
Thanks in advance!
            
        P(t)= P(i)e^kt, where P is population, t is time, k is a constant and P(i) is the initial p or "p naught"; sorry, I don't know the typed notation for subscript. By the way, p(i) is given as 100.
The problems are
a.) "Find the expression after t hours"
b.) "Find the number of bacteria after t hours."
The answer to a is(via back of the book) is: 100(4.2)^t
I'm not sure exactly how to get there though I believe it has to do with taking natural logarithms and solving for e^k but since p is a function of t I'm not sure how to differentiate "k" (treat it as a constant or differentiate implicitly). If you could show the step by step process I'd appreciate it.
I got to: p(t)= 100(e^t+e^k) and stalled out.
Thanks in advance!
Answers
                    Answered by
            bobpursley
            
    e^kt=(e^k)^t so apparently e^k=100
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.