The linear equation \( y = -3x + 2 \) has a slope of -3 and a y-intercept of 2. This means that it is a downward-sloping line starting at (0, 2).
In the given options:
- The first one indicates a line passing through points \( (0, 3) \) and \( (1, 5) \), which does not match our equation.
- The second one states a line passing through points \( (-2, 2) \) and \( (0, 1) \), which is also not the correct representation of the equation.
- The third one shows points \( (0, 2) \) and \( (1, -1) \). This one matches the equation \( y = -3x + 2 \) because:
- At \( x = 0 \), \( y = 2 \).
- At \( x = 1 \), \( y = -1 \) which is consistent with the slope -3 (the decrease of 3 in y for an increase of 1 in x).
Therefore, the correct response is the third one.