ne angle has a measure of (x+4)°

and the other angle has a measure of (3x+2)What are the two unknown angle measures that form the 90°
angle?

1 answer

To find the measures of the two unknown angles that form a 90° angle, we can set up the equation:

\[ (x + 4) + (3x + 2) = 90 \]

Now, simplify the left side of the equation:

\[ x + 4 + 3x + 2 = 90 \]

Combine like terms:

\[ 4x + 6 = 90 \]

Next, subtract 6 from both sides:

\[ 4x = 90 - 6 \] \[ 4x = 84 \]

Now, divide both sides by 4:

\[ x = \frac{84}{4} = 21 \]

Now that we have the value of \(x\), we can find the measures of the two angles.

  1. The first angle is: \[ x + 4 = 21 + 4 = 25° \]

  2. The second angle is: \[ 3x + 2 = 3(21) + 2 = 63 + 2 = 65° \]

Thus, the two unknown angle measures are 25° and 65°.