Asked by Amanda
Uranium ore has two main isotopes, mostly U-238 with just a trace amount of U-235. In a sample of Uranium ore, 99.85% of the atoms are U-238 atoms and 0.15% are U-235 atoms.
Before the Uranium can be used in a nuclear power plant, the proportion of U-235 must be increased to 15% (thus reducing the proportion of U-238 to 85%). This is done by a process called gas diffusion. The ratio of the masses of these two isotopes is U-238 to U-235 = 1.013. Each cycle of the gas diffusion process decreases U-238 by 1.3%. How many cycles are required to reduce the U-238 to 85%?
Before the Uranium can be used in a nuclear power plant, the proportion of U-235 must be increased to 15% (thus reducing the proportion of U-238 to 85%). This is done by a process called gas diffusion. The ratio of the masses of these two isotopes is U-238 to U-235 = 1.013. Each cycle of the gas diffusion process decreases U-238 by 1.3%. How many cycles are required to reduce the U-238 to 85%?
Answers
Answered by
drwls
You want to go from 99.85% U-238 to 85%.
Each cycle of the process decreases the U-238 fraction by a ratio 1-0.013 = 0.987. Let the number of processing cycles required be N.
0.850/0.9985 = 0.8513 = 0.987^N
Solve for N.
N = Log0.8513/Log0.987 = 12.3
Call it 13, for a margin of safety
This is not a calculus problem. Precalc, maybe.
Each cycle of the process decreases the U-238 fraction by a ratio 1-0.013 = 0.987. Let the number of processing cycles required be N.
0.850/0.9985 = 0.8513 = 0.987^N
Solve for N.
N = Log0.8513/Log0.987 = 12.3
Call it 13, for a margin of safety
This is not a calculus problem. Precalc, maybe.
Answered by
Anonymous
178
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.