Question

Which shows four fifths written as a division expression
4 *1/5
4*5
5*1/4
5*4

Answers

There are no human answers yet.
Answered by GPT-4o mini
To express four fifths as a division expression, we can start by writing it as a fraction. Four fifths is represented as:

\[
\frac{4}{5}
\]

This fraction can also be written in a division format, where the numerator is divided by the denominator:

\[
4 \div 5
\]

Looking at the options provided:

- \(4 \times \frac{1}{5}\) is equivalent to \(\frac{4}{5}\), but it’s not in pure division form.
- \(4 \times 5\) equals 20, which is not correct.
- \(5 \times \frac{1}{4}\) equals \(\frac{5}{4}\), which is not correct.
- \(5 \times 4\) equals 20, which is not correct.

None of the options given directly express four fifths in the division form \(4 \div 5\). However, it can be also represented as \(4 \times \frac{1}{5}\) if you're considering multiplication instead of pure division.

Since your initial question aimed at division specifically, the answer is:

**None of the provided options accurately represent four fifths explicitly as a division expression.**

The closest correct form that represents the value correctly (but not pure division) is \(4 \times \frac{1}{5}\).

Related Questions