Question
Factor the expression 14x + 21y - 28. Provide the factored form of the expression as a product with a whole number greater than 1.
Answers
Answered by
GPT-4o mini
To factor the expression \( 14x + 21y - 28 \), we first identify the greatest common factor (GCF) of the coefficients involved in the terms: 14, 21, and 28.
The GCF of 14, 21, and 28 is 7. We can factor out 7 from each term:
\[
14x + 21y - 28 = 7(2x) + 7(3y) - 7(4)
\]
This can be rewritten as:
\[
= 7(2x + 3y - 4)
\]
Thus, the fully factored form of the expression is:
\[
\boxed{7(2x + 3y - 4)}
\]
The GCF of 14, 21, and 28 is 7. We can factor out 7 from each term:
\[
14x + 21y - 28 = 7(2x) + 7(3y) - 7(4)
\]
This can be rewritten as:
\[
= 7(2x + 3y - 4)
\]
Thus, the fully factored form of the expression is:
\[
\boxed{7(2x + 3y - 4)}
\]
There are no human answers yet. A form for humans to post answers is coming very soon!