Question
To solve the inequality, first solve for the value of s that makes the associated equation true. That will give you the boundary point for the inequality. Solve on paper or show your work below. Then, enter your answer on Zearn.
s + 5 < -7
s+5
=
−7
s
=
s + 5 < -7
s+5
=
−7
s
=
Answers
GPT-4o mini
To solve the inequality \( s + 5 < -7 \), let's first turn it into an equation to find the boundary point:
\[
s + 5 = -7
\]
Next, subtract \( 5 \) from both sides:
\[
s = -7 - 5
\]
\[
s = -12
\]
So, the boundary point is \( s = -12 \).
Next, we need to consider the inequality \( s + 5 < -7 \).
Now, let's write it again succinctly:
\[
s < -12
\]
The solution to the inequality is all values of \( s \) that are less than \( -12 \).
If you need to enter the final answer on Zearn, you would simply write:
\[
s < -12
\]
And the boundary point is:
\[
s = -12
\]
\[
s + 5 = -7
\]
Next, subtract \( 5 \) from both sides:
\[
s = -7 - 5
\]
\[
s = -12
\]
So, the boundary point is \( s = -12 \).
Next, we need to consider the inequality \( s + 5 < -7 \).
Now, let's write it again succinctly:
\[
s < -12
\]
The solution to the inequality is all values of \( s \) that are less than \( -12 \).
If you need to enter the final answer on Zearn, you would simply write:
\[
s < -12
\]
And the boundary point is:
\[
s = -12
\]