page 11 of 11

2 of 52 of 5 Items

Question
Consider the three-dimensional below.
(A three-dimensional rectangular prism (box) is shown. 

The dimensions of the box are labeled: 

* **10 in.** (width along the base)
* **9 in.** (length along the base)
* **3 in.** (height)

Dashed lines indicate the left side and the bottom of the prism. The labels "Left Side" and "Top" are included. The colors are a light peach/coral for the prism's interior and a darker coral/peach tone for the bottom portion of the prism.)

Determine the total surface area of the figure. The formula chart is at the bottom of the page.

(4 points)
Area of the Left Side =
square inches

Area of the Back =
square inches

Area of the Bottom =
square inches

TOTAL surface area of the figure =
square inches

Skip to navigation

Formula keypad has been closed. Press Control + Backslash to open it again.

1 answer

To find the total surface area of a rectangular prism, you can use the formula:

\[ \text{Surface Area} = 2lw + 2lh + 2wh \]

where:

  • \( l \) = length
  • \( w \) = width
  • \( h \) = height

Given the dimensions of the box:

  • Width (\( w \)) = 10 inches
  • Length (\( l \)) = 9 inches
  • Height (\( h \)) = 3 inches

Now, we can calculate each area:

  1. Area of the Left Side (Width x Height): \[ = w \times h = 10 , \text{inches} \times 3 , \text{inches} = 30 , \text{square inches} \]

  2. Area of the Back (Length x Height): \[ = l \times h = 9 , \text{inches} \times 3 , \text{inches} = 27 , \text{square inches} \]

  3. Area of the Bottom (Length x Width): \[ = l \times w = 9 , \text{inches} \times 10 , \text{inches} = 90 , \text{square inches} \]

Now, we can find the total surface area:

  • The total surface area is calculated as: \[ \text{Total Surface Area} = 2lw + 2lh + 2wh \]

    Plugging in the values: \[ = 2(9 \times 10) + 2(9 \times 3) + 2(10 \times 3) \] \[ = 2(90) + 2(27) + 2(30) \] \[ = 180 + 54 + 60 = 294 , \text{square inches} \]

So, you can fill out the answers as follows:

  • Area of the Left Side = 30 square inches
  • Area of the Back = 27 square inches
  • Area of the Bottom = 90 square inches
  • TOTAL surface area of the figure = 294 square inches