The number \( 7\sqrt{} \) seems to be missing an expression under the square root. Assuming you meant \( \sqrt{7} \), here is the classification:
- Natural: No, because natural numbers are positive integers (1, 2, 3, ...), and \( \sqrt{7} \) is not an integer.
- Whole: No, because whole numbers are non-negative integers (0, 1, 2, ...), and \( \sqrt{7} \) is not an integer.
- Integer: No, because integers include all whole numbers and their negatives, and \( \sqrt{7} \) is not an integer.
- Rational: No, because rational numbers can be expressed as a fraction of two integers, and \( \sqrt{7} \) cannot be expressed that way.
- Irrational: Yes, because \( \sqrt{7} \) cannot be expressed as a fraction of two integers, making it an irrational number.
Thus, the correct classification for \( \sqrt{7} \) is Irrational. If you meant something else with \( 7\sqrt{} \), please clarify.