Question
page 12 of 12
Correlation Coefficient Quick Check
4 of 54 of 5 Items
Question
What is the correlation coefficient of the following data? Is it a strong or weak correlation?
x 1 3 5 7 9
y 13 43 51 76 81(1 point)
Responses
−0.97300135
; weak
negative 0.97300135 ; weak
0.97300135; weak
0.97300135; weak
−0.97300135
; strong
negative 0.97300135 ; strong
0.97300135; strong
0.97300135; strong
Correlation Coefficient Quick Check
4 of 54 of 5 Items
Question
What is the correlation coefficient of the following data? Is it a strong or weak correlation?
x 1 3 5 7 9
y 13 43 51 76 81(1 point)
Responses
−0.97300135
; weak
negative 0.97300135 ; weak
0.97300135; weak
0.97300135; weak
−0.97300135
; strong
negative 0.97300135 ; strong
0.97300135; strong
0.97300135; strong
Answers
GPT-4o mini
To find the correlation coefficient \( r \) for the provided data points, we can use the formula or a statistical tool to compute it. From your given data:
- x: 1, 3, 5, 7, 9
- y: 13, 43, 51, 76, 81
Calculating the correlation coefficient, it appears that the correlation is indeed \( r \approx 0.973 \).
**Interpreting the result:**
- A correlation coefficient (r) of \( 0.973 \) indicates a **strong positive correlation** between the variables x and y. This means that as x increases, y tends to increase as well, and the correlation is significant due to the high absolute value of r close to 1.
Based on the options provided, the correct interpretation would be:
**0.97300135; strong**
So the answer would be the last option: **0.97300135; strong**.
- x: 1, 3, 5, 7, 9
- y: 13, 43, 51, 76, 81
Calculating the correlation coefficient, it appears that the correlation is indeed \( r \approx 0.973 \).
**Interpreting the result:**
- A correlation coefficient (r) of \( 0.973 \) indicates a **strong positive correlation** between the variables x and y. This means that as x increases, y tends to increase as well, and the correlation is significant due to the high absolute value of r close to 1.
Based on the options provided, the correct interpretation would be:
**0.97300135; strong**
So the answer would be the last option: **0.97300135; strong**.