Which of these graphs shows that the linear system y=−x+6 and 3x+3y=18 has an infinite number of solutions?(1 point)

Responses

A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. Two intersecting lines are plotted on the plane. A solid downward slanting line with arrows at both ends passes through the points left parenthesis 0 comma 6 right parenthesis and left parenthesis 6 comma 0 right parenthesis. A dotted downward slanting line with arrows at both ends passes through the points left parenthesis negative 6 comma 4 right parenthesis and left parenthesis 3 comma 3 right parenthesis.
Image with alt text: A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. Two intersecting lines are plotted on the plane. A solid downward slanting line with arrows at both ends passes through the points left parenthesis 0 comma 6 right parenthesis and left parenthesis 6 comma 0 right parenthesis. A dotted downward slanting line with arrows at both ends passes through the points left parenthesis negative 6 comma 4 right parenthesis and left parenthesis 3 comma 3 right parenthesis.

A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. A line is plotted on the plane. A downward slanting line with arrows at both ends passes through the points left parenthesis negative 6 comma 0 right parenthesis and left parenthesis 0 comma negative 6 right parenthesis.
Image with alt text: A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. A line is plotted on the plane. A downward slanting line with arrows at both ends passes through the points left parenthesis negative 6 comma 0 right parenthesis and left parenthesis 0 comma negative 6 right parenthesis.

A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. Two parallel lines are plotted on the plane. A solid downward slanting line with arrows at both ends passes through the points left parenthesis 0 comma 6 right parenthesis and left parenthesis 6 comma 0 right parenthesis. A dotted downward slanting line with arrows at both ends passes through the points left parenthesis 0 comma 4 right parenthesis and left parenthesis 4 comma 0 right parenthesis.
Image with alt text: A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. Two parallel lines are plotted on the plane. A solid downward slanting line with arrows at both ends passes through the points left parenthesis 0 comma 6 right parenthesis and left parenthesis 6 comma 0 right parenthesis. A dotted downward slanting line with arrows at both ends passes through the points left parenthesis 0 comma 4 right parenthesis and left parenthesis 4 comma 0 right parenthesis.

A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. A line is plotted on the plane. A downward slanting line with arrows at both ends passes through the points left parenthesis 0 comma 6 right parenthesis and left parenthesis 6 comma 0 right parenthesis.
Image with alt text: A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. A line is plotted on the plane. A downward slanting line with arrows at both ends passes through the points left parenthesis 0 comma 6 right parenthesis and left parenthesis 6 comma 0 right parenthesis.
Skip to navigation

1 answer

For the linear system \( y = -x + 6 \) and \( 3x + 3y = 18 \) to have an infinite number of solutions, the two equations must represent the same line. This occurs when the second equation is a multiple of the first.

First, let's rewrite the second equation:

  1. \( 3x + 3y = 18 \) can be simplified by dividing both sides by 3:

    \[ x + y = 6 \quad \text{(which can be rewritten as \( y = -x + 6 \))} \]

Since both equations describe the same line, they will overlap completely on a graph.

Now, let's analyze your options:

  • The first graph shows two intersecting lines. This indicates that there is only one solution.

  • The second graph shows a single line, which represents only one equation and doesn't provide infinite solutions.

  • The third graph shows two parallel lines. This indicates that the equations are not the same and do not intersect, meaning no solutions exist.

  • The fourth graph includes the line from \( y = -x + 6 \) and does not include another line, representing the same line as \( y = -x + 6 \).

Therefore, the correct graph that shows the linear system has an infinite number of solutions is the fourth option, which displays the line \( y = -x + 6 \) alone.

Final answer: The fourth option.