To find the slope and the y-intercept of the line that connects the two points A(0, 6) and B(-2, 2), we can follow these steps:
-
Calculate the slope (m) using the formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] where \( (x_1, y_1) \) are the coordinates of Point A (0, 6) and \( (x_2, y_2) \) are the coordinates of Point B (-2, 2).
Substituting in the values: \[ m = \frac{2 - 6}{-2 - 0} = \frac{-4}{-2} = 2 \] The slope is \( 2 \).
-
Calculate the y-intercept (b). Since the y-intercept is where the line crosses the y-axis, we can use the y-coordinate of Point A, which is (0, 6). This means that the y-intercept is \( 6 \).
Thus, the final answer is: The slope is \( 2 \). The y-intercept is (0, 6).