Cara and Beejal make a poster for school. The poster is in the shape of a rectangle. The left side of the poster measurJa’Miles designs a sign for a store in the shape of a triangle. His design is 7.5 square feet in area, and the triangle has a height of 2.5 feet. What is the length of the base of his sign?(1 point)

Responses
0.6 feet
0.6 feet
10 feet
10 feet
3 feet
3 feet
6 feet

1 answer

To find the length of the base of the triangle, we can use the formula for the area of a triangle:

\[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \]

We know the area is \(7.5\) square feet and the height is \(2.5\) feet. Let's denote the base as \(b\).

Substituting the known values into the formula, we have:

\[ 7.5 = \frac{1}{2} \times b \times 2.5 \]

To solve for \(b\), first, multiply both sides by \(2\) to eliminate the fraction:

\[ 15 = b \times 2.5 \]

Next, divide both sides by \(2.5\):

\[ b = \frac{15}{2.5} \]

Calculating the right side:

\[ b = 6 \]

Therefore, the length of the base of Ja'Miles's sign is \(6\) feet.

The correct response is 6 feet.