Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Graph the linear equation y=−3x+2.(1 point) Responses A coordinate plane shows the x-axis ranging from negative 9 to 9 in incre...Asked by botfor1
Graph the linear equation y=−3x+2
.(1 point)
Responses
A coordinate plane shows the x-axis ranging from negative 9 to 9 in increments of 1 and the y-axis ranging from 11 to negative 11 in increments of 1. A line with arrows at both ends joins two plotted points.
The coordinates of the plotted points are as follows: left parenthesis negative 2 comma 2 right parenthesis, and left parenthesis 0 comma 1 right parenthesis.
Image with alt text: A coordinate plane shows the x-axis ranging from negative 9 to 9 in increments of 1 and the y-axis ranging from 11 to negative 11 in increments of 1. A line with arrows at both ends joins two plotted points. The coordinates of the plotted points are as follows: left parenthesis negative 2 comma 2 right parenthesis, and left parenthesis 0 comma 1 right parenthesis.
An illustration of a coordinate plane with four quadrants shows the x-axis ranging from negative 9 to 9 and the y-axis ranging from negative 11 to 11 in increments of 1. A solid upward line with arrows at both ends is plotted on the graph. The line passes through the plotted points left parenthesis 0 comma 3 right parenthesis and left parenthesis 1 comma 5 right parenthesis.
Image with alt text: An illustration of a coordinate plane with four quadrants shows the x-axis ranging from negative 9 to 9 and the y-axis ranging from negative 11 to 11 in increments of 1. A solid upward line with arrows at both ends is plotted on the graph. The line passes through the plotted points left parenthesis 0 comma 3 right parenthesis and left parenthesis 1 comma 5 right parenthesis.
An illustration of a coordinate plane with four quadrants shows the x-axis ranging from negative 9 to 9 and the y-axis ranging from negative 11 to 11 in increments of 1. A solid downward line with arrows at both ends is plotted on the graph. he line passes through the plotted points left parenthesis 0 comma negative 2 right parenthesis and left parenthesis 1 comma negative 5 right parenthesis. A dotted vertical line labeled 3 from left parenthesis 1 comma negative 5 right parenthesis and a dotted horizontal line labeled 1 from left parenthesis 0 comma negative 2 right parenthesis intersect at left parenthesis 1 comma negative 2 right parenthesis, forming a right triangle with the slope.
Image with alt text: An illustration of a coordinate plane with four quadrants shows the x-axis ranging from negative 9 to 9 and the y-axis ranging from negative 11 to 11 in increments of 1. A solid downward line with arrows at both ends is plotted on the graph. he line passes through the plotted points left parenthesis 0 comma negative 2 right parenthesis and left parenthesis 1 comma negative 5 right parenthesis. A dotted vertical line labeled 3 from left parenthesis 1 comma negative 5 right parenthesis and a dotted horizontal line labeled 1 from left parenthesis 0 comma negative 2 right parenthesis intersect at left parenthesis 1 comma negative 2 right parenthesis, forming a right triangle with the slope.
A coordinate plane shows the x-axis ranging from negative 9 to 9 in increments of 1 and the y-axis ranging from 11 to negative 11 in increments of 1. A line with arrows at both ends joins two plotted points.
The coordinates of the plotted points are as follows: left parenthesis 0 comma 2 right parenthesis, and left parenthesis 1 comma negative 1 right parenthesis.
Image with alt text: A coordinate plane shows the x-axis ranging from negative 9 to 9 in increments of 1 and the y-axis ranging from 11 to negative 11 in increments of 1. A line with arrows at both ends joins two plotted points. The coordinates of the plotted points are as follows: left parenthesis 0 comma 2 right parenthesis, and left parenthesis 1 comma negative 1 right parenthesis.
Skip to navigation
.(1 point)
Responses
A coordinate plane shows the x-axis ranging from negative 9 to 9 in increments of 1 and the y-axis ranging from 11 to negative 11 in increments of 1. A line with arrows at both ends joins two plotted points.
The coordinates of the plotted points are as follows: left parenthesis negative 2 comma 2 right parenthesis, and left parenthesis 0 comma 1 right parenthesis.
Image with alt text: A coordinate plane shows the x-axis ranging from negative 9 to 9 in increments of 1 and the y-axis ranging from 11 to negative 11 in increments of 1. A line with arrows at both ends joins two plotted points. The coordinates of the plotted points are as follows: left parenthesis negative 2 comma 2 right parenthesis, and left parenthesis 0 comma 1 right parenthesis.
An illustration of a coordinate plane with four quadrants shows the x-axis ranging from negative 9 to 9 and the y-axis ranging from negative 11 to 11 in increments of 1. A solid upward line with arrows at both ends is plotted on the graph. The line passes through the plotted points left parenthesis 0 comma 3 right parenthesis and left parenthesis 1 comma 5 right parenthesis.
Image with alt text: An illustration of a coordinate plane with four quadrants shows the x-axis ranging from negative 9 to 9 and the y-axis ranging from negative 11 to 11 in increments of 1. A solid upward line with arrows at both ends is plotted on the graph. The line passes through the plotted points left parenthesis 0 comma 3 right parenthesis and left parenthesis 1 comma 5 right parenthesis.
An illustration of a coordinate plane with four quadrants shows the x-axis ranging from negative 9 to 9 and the y-axis ranging from negative 11 to 11 in increments of 1. A solid downward line with arrows at both ends is plotted on the graph. he line passes through the plotted points left parenthesis 0 comma negative 2 right parenthesis and left parenthesis 1 comma negative 5 right parenthesis. A dotted vertical line labeled 3 from left parenthesis 1 comma negative 5 right parenthesis and a dotted horizontal line labeled 1 from left parenthesis 0 comma negative 2 right parenthesis intersect at left parenthesis 1 comma negative 2 right parenthesis, forming a right triangle with the slope.
Image with alt text: An illustration of a coordinate plane with four quadrants shows the x-axis ranging from negative 9 to 9 and the y-axis ranging from negative 11 to 11 in increments of 1. A solid downward line with arrows at both ends is plotted on the graph. he line passes through the plotted points left parenthesis 0 comma negative 2 right parenthesis and left parenthesis 1 comma negative 5 right parenthesis. A dotted vertical line labeled 3 from left parenthesis 1 comma negative 5 right parenthesis and a dotted horizontal line labeled 1 from left parenthesis 0 comma negative 2 right parenthesis intersect at left parenthesis 1 comma negative 2 right parenthesis, forming a right triangle with the slope.
A coordinate plane shows the x-axis ranging from negative 9 to 9 in increments of 1 and the y-axis ranging from 11 to negative 11 in increments of 1. A line with arrows at both ends joins two plotted points.
The coordinates of the plotted points are as follows: left parenthesis 0 comma 2 right parenthesis, and left parenthesis 1 comma negative 1 right parenthesis.
Image with alt text: A coordinate plane shows the x-axis ranging from negative 9 to 9 in increments of 1 and the y-axis ranging from 11 to negative 11 in increments of 1. A line with arrows at both ends joins two plotted points. The coordinates of the plotted points are as follows: left parenthesis 0 comma 2 right parenthesis, and left parenthesis 1 comma negative 1 right parenthesis.
Skip to navigation
Answers
There are no human answers yet.
Answered by
GPT-4o mini
To graph the linear equation \(y = -3x + 2\), we need to find a couple of key points on the line.
1. **Find the y-intercept**: When \(x = 0\):
\[
y = -3(0) + 2 = 2
\]
So, one point is \((0, 2)\).
2. **Find another point by choosing a value for \(x\)**: Let's pick \(x = 1\):
\[
y = -3(1) + 2 = -1
\]
The second point is \((1, -1)\).
Now we have two points: \((0, 2)\) and \((1, -1)\).
**Graphing these points**:
- Plot the point \((0, 2)\) on the graph.
- Plot the point \((1, -1)\) on the graph.
**Draw the line**:
- Draw a straight line that passes through both points and extends in both directions, with arrows on each end.
**Analyzing the options** you provided:
- The correct response should be the one that shows a downward sloping line that passes through the points \((0, 2)\) and \((1, -1)\).
Looking through your descriptions, the closest matching response is:
**"A coordinate plane shows the x-axis ranging from negative 9 to 9 in increments of 1 and the y-axis ranging from 11 to negative 11 in increments of 1. A line with arrows at both ends joins two plotted points. The coordinates of the plotted points are as follows: (0, 2) and (1, -1)."**
This matches our calculated points and accurately describes the graph of the equation \(y = -3x + 2\).
1. **Find the y-intercept**: When \(x = 0\):
\[
y = -3(0) + 2 = 2
\]
So, one point is \((0, 2)\).
2. **Find another point by choosing a value for \(x\)**: Let's pick \(x = 1\):
\[
y = -3(1) + 2 = -1
\]
The second point is \((1, -1)\).
Now we have two points: \((0, 2)\) and \((1, -1)\).
**Graphing these points**:
- Plot the point \((0, 2)\) on the graph.
- Plot the point \((1, -1)\) on the graph.
**Draw the line**:
- Draw a straight line that passes through both points and extends in both directions, with arrows on each end.
**Analyzing the options** you provided:
- The correct response should be the one that shows a downward sloping line that passes through the points \((0, 2)\) and \((1, -1)\).
Looking through your descriptions, the closest matching response is:
**"A coordinate plane shows the x-axis ranging from negative 9 to 9 in increments of 1 and the y-axis ranging from 11 to negative 11 in increments of 1. A line with arrows at both ends joins two plotted points. The coordinates of the plotted points are as follows: (0, 2) and (1, -1)."**
This matches our calculated points and accurately describes the graph of the equation \(y = -3x + 2\).
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.