Question

Find the mean and standard deviation of the following data set. Round to the nearest tenth. 11, 14, 15, 15, 16, 16, 18, 18, 19, 24 (2 points) μ= σ=

Answers

GPT-4o mini
To find the mean and standard deviation of the data set \(11, 14, 15, 15, 16, 16, 18, 18, 19, 24\), we can follow these steps:

### Step 1: Calculate the Mean (\( \mu \))

The mean is calculated as the sum of all the data points divided by the number of data points.

\[
\mu = \frac{\sum x_i}{n}
\]

Where:
- \(x_i\) are the data points
- \(n\) is the number of data points

For the given data set:

\[
\sum x_i = 11 + 14 + 15 + 15 + 16 + 16 + 18 + 18 + 19 + 24 = 11 + 14 + 15 + 15 + 16 + 16 + 18 + 18 + 19 + 24 = 6 + 15 + 15 + 16 + 18 + 18 + 19 + 24 = 10 + 19 + 24 = 191
\]

The number of data points:
\[
n = 10
\]

Now calculate the mean:
\[
\mu = \frac{191}{10} = 19.1
\]

### Step 2: Calculate the Standard Deviation (\( \sigma \))

Standard deviation is calculated using the formula:

\[
\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}
\]

1. First, calculate each \( (x_i - \mu)^2 \):

- \( (11 - 19.1)^2 = (-8.1)^2 = 65.61 \)
- \( (14 - 19.1)^2 = (-5.1)^2 = 26.01 \)
- \( (15 - 19.1)^2 = (-4.1)^2 = 16.81 \)
- \( (15 - 19.1)^2 = (-4.1)^2 = 16.81 \)
- \( (16 - 19.1)^2 = (-3.1)^2 = 9.61 \)
- \( (16 - 19.1)^2 = (-3.1)^2 = 9.61 \)
- \( (18 - 19.1)^2 = (-1.1)^2 = 1.21 \)
- \( (18 - 19.1)^2 = (-1.1)^2 = 1.21 \)
- \( (19 - 19.1)^2 = (-0.1)^2 = 0.01 \)
- \( (24 - 19.1)^2 = (4.9)^2 = 24.01 \)

Now, our squared differences are:

\[
65.61, 26.01, 16.81, 16.81, 9.61, 9.61, 1.21, 1.21, 0.01, 24.01
\]

2. Now, sum these squared differences:

\[
\sum (x_i - \mu)^2 = 65.61 + 26.01 + 16.81 + 16.81 + 9.61 + 9.61 + 1.21 + 1.21 + 0.01 + 24.01 = 65.61 + 26.01 + 16.81 + 16.81 + 9.61 + 9.61 + 1.21 + 1.21 + 0.01 + 24.01 = 8 + 16 + 0 + 24 + 75 = 193
\]

3. Finally, calculate the standard deviation:

\[
\sigma = \sqrt{\frac{193}{10}} = \sqrt{19.3} \approx 4.4
\]

### Final results:

So, the mean and standard deviation of the data set are:

\[
\mu \approx 19.1
\]
\[
\sigma \approx 4.4
\]

**Rounded to the nearest tenth:**
- \( \mu = 19.1 \)
- \( \sigma = 4.4 \)