Use the image to answer the question.

A coordinate plane with 4 quadrants shows x and y axes ranging from negative 5 to 5 in increments of 1. Three triangles are formed by joining three plotted points each. Two of the triangles are joined by connecting their vertices with rays. The coordinates of the plotted points for the triangle in quadrant 4 are left parenthesis 1 comma negative 1 right parenthesis, left parenthesis 1 comma negative 3 right parenthesis, and left parenthesis 3 comma negative 2 right parenthesis. The coordinates for the triangle in quadrant 2 are left parenthesis negative 4 comma 2 right parenthesis, left parenthesis negative 2 comma 2 right parenthesis, and left parenthesis negative 3 comma 4 right parenthesis. The side joining point left parenthesis negative 4 comma 2 right parenthesis and point left parenthesis negative 2 comma 2 right parenthesis is labeled e. The side joining point left parenthesis negative 4 comma 2 right parenthesis and point left parenthesis negative 3 comma 4 right parenthesis is labeled g. The side joining point left parenthesis negative 3 comma 4 right parenthesis and point left parenthesis negative 2 comma 2 right parenthesis is labeled h. The coordinates of the plotted points for the triangle in quadrant 1 are left parenthesis 1 comma 1 right parenthesis, left parenthesis 3 comma 1 right parenthesis, and left parenthesis 2 comma 3 right parenthesis. Three rays join each vertex of the triangle in quadrant 1 to the complementary vertices of the triangle in quadrant 2. A ray connects point left parenthesis 1 comma 1 right parenthesis to point left parenthesis negative 4 comma 2 right parenthesis. A ray connects point left parenthesis 3 comma 1 right parenthesis to point left parenthesis negative 2 comma 2 right parenthesis. A ray connects point left parenthesis 2 comma 3 right parenthesis to point left parenthesis negative 3 comma 4 right parenthesis. The arrow heads are on the vertices of the triangle in quadrant 2.

What two transformations are shown to demonstrate that the triangles are congruent?

(2 points)

____ degrees counterclockwise and (__, ___)​​​​​​​

1 answer

To demonstrate that the triangles are congruent, the transformations involved are typically a rotation and a translation.

Based on your description, we can deduce the following:

  1. Rotation: The triangle in quadrant 1 appears to be rotated 90 degrees counterclockwise to align with the triangle in quadrant 2.

  2. Translation: After the rotation, the triangle may then need to be translated by a certain vector to match the position of the triangle in quadrant 2.

Based on the coordinates, one potential translation could be moving the triangle from quadrant 1 to quadrant 2, which can be represented as the vector (-5, 1).

Thus, we can answer:

90 degrees counterclockwise and (-5, 1).