Asked by sue
A car company says that the mean gas mileage for its luxury sedan is at least 21 miles per gallon. You believe the claim is incorrect and find that a random sample of five cars has a mean gas mileage of 19 miles per gallon and a standard deviation of 4 miles per gallon. Assume the gas mileage of all of the company’s luxury sedans is normally distributed. At á = 0.05, test the company’s claim.
• What is the difference between a critical value and a test statistic?
• Decide whether you should use a normal sampling distribution or a t-sampling distribution to perform the hypothesis test.
• Why would you use a z-test rather than a t-test?
• Which do you think you will use more often? Justify your decisions.
• Then use the distribution to test the claim.
• Write a short paragraph about the results of the test and what you can conclude about the claim.
• What is the difference between a critical value and a test statistic?
• Decide whether you should use a normal sampling distribution or a t-sampling distribution to perform the hypothesis test.
• Why would you use a z-test rather than a t-test?
• Which do you think you will use more often? Justify your decisions.
• Then use the distribution to test the claim.
• Write a short paragraph about the results of the test and what you can conclude about the claim.
Answers
Answered by
Anonymous
Ho: Mean >= 21 (claim)
Ha: mean < 21
t = 1.118
P-value = 0.163
Fail to reject Ho
Ha: mean < 21
t = 1.118
P-value = 0.163
Fail to reject Ho
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.