To solve the equation \(-2(3x - 15) - 25 = 35\), follow these steps:
-
Distribute \(-2\) to the terms inside the parentheses: \[ -2 \cdot 3x + -2 \cdot (-15) - 25 = 35 \] This simplifies to: \[ -6x + 30 - 25 = 35 \]
-
Combine like terms on the left side: \[ -6x + 5 = 35 \]
-
Subtract 5 from both sides to isolate the term with \(x\): \[ -6x = 35 - 5 \] This simplifies to: \[ -6x = 30 \]
-
Divide both sides by \(-6\) to solve for \(x\): \[ x = \frac{30}{-6} \] This simplifies to: \[ x = -5 \]
Thus, the solution is: \[ \boxed{-5} \]