Asked by Kate
Find the range of
y = (3x-1)/(2x^2 + x - 6)
I was going to take the derivative of the numerator and denomenator and then use the quotent rule to find the derivative of the function and find the critical values but I ran into the imaginary number during the proess and am woundering if I did nothing wrong... if I did nothing wrong then what exactly does this mean?
y = (3x-1)/(2x^2 + x - 6) = h(x)
f(x) = (3x-1)
g(x)= 2x^2 + x - 6
dy/dx f(x) = ( 3(x + a) -1 -3x + 1 ) / a = (3x + 3a -1 - 3x +1)/a = (3a)/a = 3
dy/dx f(g) = ( 2(x + a)^2 + x + a - 6 -2x^2 -x +6)/a = (2(x^2 + a^2 + 2ax) + a -2x^2)/a = (2x^2 + 2a^2 + 4ax + a -2x^2)/a = (2a^2 + 4ax +a)/a = 2a + 4x + 1 = 4x + 1
dy/dx h(x) = ( (2x^2 + x -6)3-(3x - 1)(4x +1) )/ (2x^2 + x - 6)^2 = ( 6x^2 + 3x - 18 -(12x^2 + 3x - 4x -1) )/(2x^2 + x - 6)^2 = ( 6x^2 + 3x - 18 -(12x^2 -x - 1) )/(2x^2 + x - 6)^2 = ( 6x^2 + 3x - 18 -12x^2 + x + 1)/(2x^2 + x - 6)^2 = ( -6x^2 + 4x -17)/(2x^2 + x - 6)^2
At this point I proceded by setting the numerator to zero and solving which is were I got stuck at least I think I don't see what I have done any where even while typing this thing up charecter by charecter, normally this is a good way to catch mistakes but I have found nothing wrong with my work...
-6x^2 + 4x -17 = 0
(-4 +/- sqrt( 4^2 - 4(-6)(-17) ) )/(2(-6)) = -4/-12 +/- (1/-12)sqrt( 4 - (-6)(-17) ) = 1/3 +/- (-1/6)sqrt(2(2 - (-3)(-17)) = 1/3 +/- (-1/6)sqrt(2(2-51)) = 1/3 +/- (-1/6)sqrt(2(-47) = 1/3 +/- (-7/6)sqrt(-2) = 1/3 +/- (-7i/6)sqrt(2)
Is this correct or did I just simply do something wrong here? Don't see were or how...
y = (3x-1)/(2x^2 + x - 6)
I was going to take the derivative of the numerator and denomenator and then use the quotent rule to find the derivative of the function and find the critical values but I ran into the imaginary number during the proess and am woundering if I did nothing wrong... if I did nothing wrong then what exactly does this mean?
y = (3x-1)/(2x^2 + x - 6) = h(x)
f(x) = (3x-1)
g(x)= 2x^2 + x - 6
dy/dx f(x) = ( 3(x + a) -1 -3x + 1 ) / a = (3x + 3a -1 - 3x +1)/a = (3a)/a = 3
dy/dx f(g) = ( 2(x + a)^2 + x + a - 6 -2x^2 -x +6)/a = (2(x^2 + a^2 + 2ax) + a -2x^2)/a = (2x^2 + 2a^2 + 4ax + a -2x^2)/a = (2a^2 + 4ax +a)/a = 2a + 4x + 1 = 4x + 1
dy/dx h(x) = ( (2x^2 + x -6)3-(3x - 1)(4x +1) )/ (2x^2 + x - 6)^2 = ( 6x^2 + 3x - 18 -(12x^2 + 3x - 4x -1) )/(2x^2 + x - 6)^2 = ( 6x^2 + 3x - 18 -(12x^2 -x - 1) )/(2x^2 + x - 6)^2 = ( 6x^2 + 3x - 18 -12x^2 + x + 1)/(2x^2 + x - 6)^2 = ( -6x^2 + 4x -17)/(2x^2 + x - 6)^2
At this point I proceded by setting the numerator to zero and solving which is were I got stuck at least I think I don't see what I have done any where even while typing this thing up charecter by charecter, normally this is a good way to catch mistakes but I have found nothing wrong with my work...
-6x^2 + 4x -17 = 0
(-4 +/- sqrt( 4^2 - 4(-6)(-17) ) )/(2(-6)) = -4/-12 +/- (1/-12)sqrt( 4 - (-6)(-17) ) = 1/3 +/- (-1/6)sqrt(2(2 - (-3)(-17)) = 1/3 +/- (-1/6)sqrt(2(2-51)) = 1/3 +/- (-1/6)sqrt(2(-47) = 1/3 +/- (-7/6)sqrt(-2) = 1/3 +/- (-7i/6)sqrt(2)
Is this correct or did I just simply do something wrong here? Don't see were or how...
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.