Graphing Proportional Relationships Quick Check

4 of 54 of 5 Items

Question
Graph the proportional relationship y=−2x
by plotting points.(1 point)
Responses

A coordinate plane ranges from negative 9 to 9 in unit increments on the x-axis and from 11 to negative 11 in unit increments on the y-axis. A line with arrows at both the ends joins three plotted points and extends beyond. The coordinates of the plotted points are: left parenthesis 0 comma 0 right parenthesis, left parenthesis 1 comma negative 1 right parenthesis, and left parenthesis 2 comma negative 2 right parenthesis.
Image with alt text: A coordinate plane ranges from negative 9 to 9 in unit increments on the x-axis and from 11 to negative 11 in unit increments on the y-axis. A line with arrows at both the ends joins three plotted points and extends beyond. The coordinates of the plotted points are: left parenthesis 0 comma 0 right parenthesis, left parenthesis 1 comma negative 1 right parenthesis, and left parenthesis 2 comma negative 2 right parenthesis.

A coordinate plane ranges from negative 9 to 9 in unit increments on the x-axis and from 11 to negative 11 in unit increments on the y-axis. A line with arrows at both the ends joins three plotted points and extends beyond. The coordinates of the plotted points are: left parenthesis 0 comma 0 right parenthesis, left parenthesis 1 comma 5 right parenthesis, and left parenthesis 2 comma 10 right parenthesis.
Image with alt text: A coordinate plane ranges from negative 9 to 9 in unit increments on the x-axis and from 11 to negative 11 in unit increments on the y-axis. A line with arrows at both the ends joins three plotted points and extends beyond. The coordinates of the plotted points are: left parenthesis 0 comma 0 right parenthesis, left parenthesis 1 comma 5 right parenthesis, and left parenthesis 2 comma 10 right parenthesis.

A coordinate plane ranges from negative 9 to 9 in unit increments on the x-axis and from 11 to negative 11 in unit increments on the y-axis. A line with arrows at both the ends joins three plotted points and extends beyond. The coordinates of the plotted points are: left parenthesis 0 comma 0 right parenthesis, left parenthesis 1 comma 2 right parenthesis, and left parenthesis 2 comma 4 right parenthesis.
Image with alt text: A coordinate plane ranges from negative 9 to 9 in unit increments on the x-axis and from 11 to negative 11 in unit increments on the y-axis. A line with arrows at both the ends joins three plotted points and extends beyond. The coordinates of the plotted points are: left parenthesis 0 comma 0 right parenthesis, left parenthesis 1 comma 2 right parenthesis, and left parenthesis 2 comma 4 right parenthesis.

A coordinate plane ranges from negative 9 to 9 in unit increments on the x-axis and from 11 to negative 11 in unit increments on the y-axis. A line with arrows at both the ends joins three plotted points and extends beyond. The coordinates of the plotted points are: left parenthesis 0 comma 0 right parenthesis, left parenthesis 1 comma negative 2 right parenthesis, and left parenthesis 2 comma negative 4 right parenthesis.
Image with alt text: A coordinate plane ranges from negative 9 to 9 in unit increments on the x-axis and from 11 to negative 11 in unit increments on the y-axis. A line with arrows at both the ends joins three plotted points and extends beyond. The coordinates of the plotted points are: left parenthesis 0 comma 0 right parenthesis, left parenthesis 1 comma negative 2 right parenthesis, and left parenthesis 2 comma negative 4 right parenthesis.
Skip to navigation

1 answer

To graph the proportional relationship given by the equation \(y = -2x\), we need to calculate the corresponding \(y\) values for selected \(x\) values:

  1. For \(x = 0\): \[ y = -2(0) = 0 \quad \Rightarrow \quad (0, 0) \]

  2. For \(x = 1\): \[ y = -2(1) = -2 \quad \Rightarrow \quad (1, -2) \]

  3. For \(x = 2\): \[ y = -2(2) = -4 \quad \Rightarrow \quad (2, -4) \]

Now we can see the points we plotted:

  • \((0, 0)\)
  • \((1, -2)\)
  • \((2, -4)\)

Among the options given, the correct one matches the points we calculated:

Correct response: A coordinate plane ranging from negative 9 to 9 in unit increments on the x-axis and from 11 to negative 11 in unit increments on the y-axis. A line with arrows at both ends joins three plotted points and extends beyond. The coordinates of the plotted points are: \((0, 0)\), \((1, -2)\), and \((2, -4)\).