Asked by Derrick
                What is used to tell different isotopes of a particular element apart?
A. the mass number
B. the atomic number
C. the number of protons
D. the number of electrons
A is the answer.
After how many half-lives are there equal amounts of parent and daughter isotopes.
A 1
B 2
C 3
D 4
The answer is A.
The half life of Ni-28 is six days. What fraction of a sample of this isotope will remain after 18 days?
A 1/2
B 1/4
C 1/8
D 1/16
            
        A. the mass number
B. the atomic number
C. the number of protons
D. the number of electrons
A is the answer.
After how many half-lives are there equal amounts of parent and daughter isotopes.
A 1
B 2
C 3
D 4
The answer is A.
The half life of Ni-28 is six days. What fraction of a sample of this isotope will remain after 18 days?
A 1/2
B 1/4
C 1/8
D 1/16
Answers
                    Answered by
            Derrick
            
    Sorry I wasn't finished posting, I accidentally pressed enter and it ended up posting. I don't get how to solve the half-life qquestion. 
My other questions are...
The half-life of a particular radioactibe isotope is 6 hours. What percent of the daughter isotope would be present after 1 day?
A 50%
B 75%
C 87.5%
D 93.75%
Your assistance will be longed-for.
    
My other questions are...
The half-life of a particular radioactibe isotope is 6 hours. What percent of the daughter isotope would be present after 1 day?
A 50%
B 75%
C 87.5%
D 93.75%
Your assistance will be longed-for.
                    Answered by
            DrBob222
            
    The half life of Ni-28 is six days. What fraction of a sample of this isotope will remain after 18 days?
A 1/2
B 1/4
C 1/8
D 1/16
You can do this two or three ways.
a. 18 days/6 days = 3 half lives; the sample will be 1/2 after 1 half life, 1/4 after two half lives, and 1/8 after 3 half lives. This works ok for a small number of half lives as long as they are even (no "part of a half live"). But it wouldn't work very well for say 20 half lives--too long to do it one by one.
b. No/N = where No = initial number of atoms, N = final number of atoms, n = # half lives.
No/N = 2<sup>n</sup> = 2<sup>3</sup> = 8. Therefore N = No/8 or 1/8 of the initial number. This works even for fractional half lives.
c. The long way but it is just a variation of the second method above.
k = 0.69315/t<sub>1/2</sub>,
k = 0.693/6 hrs = 0.1155, then substitute into
ln(No/N) = kt
ln(1/N) = 0.1155(18)
(1/N) = 8.00
N = (1/8)No. </b>
The half-life of a particular radioactibe isotope is 6 hours. What percent of the daughter isotope would be present after 1 day?
A 50%
B 75%
C 87.5%
D 93.75%
<b> 24 hours/6 hours 4 half lives.
(No/N) = 2<sup>4</sup> = 16.
N = (1/16)No
If we started with 100 for No, then we would be left with 100/16 = 6.25 which means that 100-6.25 = 93.75 have decayed and that is 93.75%
    
A 1/2
B 1/4
C 1/8
D 1/16
You can do this two or three ways.
a. 18 days/6 days = 3 half lives; the sample will be 1/2 after 1 half life, 1/4 after two half lives, and 1/8 after 3 half lives. This works ok for a small number of half lives as long as they are even (no "part of a half live"). But it wouldn't work very well for say 20 half lives--too long to do it one by one.
b. No/N = where No = initial number of atoms, N = final number of atoms, n = # half lives.
No/N = 2<sup>n</sup> = 2<sup>3</sup> = 8. Therefore N = No/8 or 1/8 of the initial number. This works even for fractional half lives.
c. The long way but it is just a variation of the second method above.
k = 0.69315/t<sub>1/2</sub>,
k = 0.693/6 hrs = 0.1155, then substitute into
ln(No/N) = kt
ln(1/N) = 0.1155(18)
(1/N) = 8.00
N = (1/8)No. </b>
The half-life of a particular radioactibe isotope is 6 hours. What percent of the daughter isotope would be present after 1 day?
A 50%
B 75%
C 87.5%
D 93.75%
<b> 24 hours/6 hours 4 half lives.
(No/N) = 2<sup>4</sup> = 16.
N = (1/16)No
If we started with 100 for No, then we would be left with 100/16 = 6.25 which means that 100-6.25 = 93.75 have decayed and that is 93.75%
                    Answered by
            Joseph
            
    how many hours are in a day? 12! So... just take the 6 as the numerator and the 12 as the denominator (6/12) and if you simplify so it will be (1/2) and if you turn that into s percentage it will be %50. THE ANSWER IS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaa 
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.