Question
find missing ratio
flour 3 30 15 18
sugar 2 20 10 12
cookies 120 240 60
flour 3 30 15 18
sugar 2 20 10 12
cookies 120 240 60
Answers
Answered by
GPT-4o mini
To find the missing ratio in the given data, let's first organize the information:
**Flour:**
- 3:30
- 15:18
**Sugar:**
- 2:20
- 10:12
**Cookies:**
- 120:240
- 60: ?
Now let's analyze each line item to determine the ratios and see if we can find the missing value.
### Flour:
1. The ratio 3:30 simplifies to 1:10.
2. The ratio 15:18 simplifies to 5:6.
### Sugar:
1. The ratio 2:20 simplifies to 1:10.
2. The ratio 10:12 simplifies to 5:6.
### Cookies:
- The line with cookies is given as 120:240, which simplifies to 1:2.
Now, if we assume that the ratios remain consistent among flour, sugar, and cookies, we can explore the missing value:
If the first value (120) corresponds to the first ratio we have, and the second value (240) corresponds to the second ratio, we would derive the missing one by the same consistent relationship as others.
Given:
- Cookies follow the same ratio transformations as flour and sugar.
For example, if 120 corresponds to the same factor that gives 3 portions of flour and 2 portions of sugar, then:
To find the other side of the cookie ratio:
Using the method of proportions, if
120 corresponds to:
- 3 parts (flour) to 2 parts (sugar): then calculate others based on consistent scaling.
To complete the cookie's ratio and find the missing value, we need to take the second set ratio from flour and sugar which relates through cookies:
Following through yields \( \frac{60}{x} = \frac{3/2}{(5:6)} = \frac{3}{2} \):
Calculate cross-multiplying:
- \( 3x = 120 \)
- \( x = 120/3 \)
- \( x = 40 \).
### Conclusion:
So, the missing ratio for cookies that corresponds to the established pattern yields **40**.
Thus the complete ratios including cookies while using pattern analogy would be:
**Cookies:**
- 120:240
- 60:40
Hope this helps! If you have more data or need additional clarification, feel free to ask!
**Flour:**
- 3:30
- 15:18
**Sugar:**
- 2:20
- 10:12
**Cookies:**
- 120:240
- 60: ?
Now let's analyze each line item to determine the ratios and see if we can find the missing value.
### Flour:
1. The ratio 3:30 simplifies to 1:10.
2. The ratio 15:18 simplifies to 5:6.
### Sugar:
1. The ratio 2:20 simplifies to 1:10.
2. The ratio 10:12 simplifies to 5:6.
### Cookies:
- The line with cookies is given as 120:240, which simplifies to 1:2.
Now, if we assume that the ratios remain consistent among flour, sugar, and cookies, we can explore the missing value:
If the first value (120) corresponds to the first ratio we have, and the second value (240) corresponds to the second ratio, we would derive the missing one by the same consistent relationship as others.
Given:
- Cookies follow the same ratio transformations as flour and sugar.
For example, if 120 corresponds to the same factor that gives 3 portions of flour and 2 portions of sugar, then:
To find the other side of the cookie ratio:
Using the method of proportions, if
120 corresponds to:
- 3 parts (flour) to 2 parts (sugar): then calculate others based on consistent scaling.
To complete the cookie's ratio and find the missing value, we need to take the second set ratio from flour and sugar which relates through cookies:
Following through yields \( \frac{60}{x} = \frac{3/2}{(5:6)} = \frac{3}{2} \):
Calculate cross-multiplying:
- \( 3x = 120 \)
- \( x = 120/3 \)
- \( x = 40 \).
### Conclusion:
So, the missing ratio for cookies that corresponds to the established pattern yields **40**.
Thus the complete ratios including cookies while using pattern analogy would be:
**Cookies:**
- 120:240
- 60:40
Hope this helps! If you have more data or need additional clarification, feel free to ask!