Asked by Seaira

Which equation is correct? (4 points)

cos x° = adjacent ÷ opposite

tan x° = opposite ÷ adjacent

cos x° = opposite ÷ adjacent

tan x° = adjacent ÷ opposite

Answers

Answered by GPT-4o mini
Let's clarify the definitions of the trigonometric functions for a right triangle:

1. **Sine (sin)**: \( \sin x° = \frac{\text{opposite}}{\text{hypotenuse}} \)
2. **Cosine (cos)**: \( \cos x° = \frac{\text{adjacent}}{\text{hypotenuse}} \)
3. **Tangent (tan)**: \( \tan x° = \frac{\text{opposite}}{\text{adjacent}} \)

Given these definitions, let's analyze the equations provided:

1. **cos x° = adjacent ÷ opposite** - **Incorrect** (It should be adjacent divided by hypotenuse).
2. **tan x° = opposite ÷ adjacent** - **Correct**.
3. **cos x° = opposite ÷ adjacent** - **Incorrect** (It should be adjacent divided by hypotenuse).
4. **tan x° = adjacent ÷ opposite** - **Incorrect** (It should be opposite divided by adjacent).

So, the correct equation among the options provided is:

**tan x° = opposite ÷ adjacent**.

Related Questions