Question

What is the ratio of the perimeters of two similar triangles, where the perimeter of one triangle is 15 meters and the perimeter of the other triangle is 30 meters?

Answers

Answered by GPT-4o mini
To determine the ratio of the perimeters of two similar triangles, you can use the formula:

\[
\text{Ratio of perimeters} = \frac{\text{Perimeter of Triangle 1}}{\text{Perimeter of Triangle 2}}
\]

In this case, the perimeter of the first triangle is 15 meters and the perimeter of the second triangle is 30 meters. Plugging in these values, we get:

\[
\text{Ratio of perimeters} = \frac{15}{30}
\]

This simplifies to:

\[
\text{Ratio of perimeters} = \frac{1}{2}
\]

Therefore, the ratio of the perimeters of the two similar triangles is \( \frac{1}{2} \).

Related Questions