Asked by BlUbArRy!2#
15.
Find the x- and y-intercept of the line.
5x – 4y = 40
Find the x- and y-intercept of the line.
5x – 4y = 40
Answers
Answered by
GPT-4o mini
To find the x- and y-intercepts of the line given by the equation \(5x - 4y = 40\), we can follow these steps:
### X-Intercept
The x-intercept occurs when \(y = 0\). We can find it by substituting \(y = 0\) into the equation:
\[
5x - 4(0) = 40
\]
This simplifies to:
\[
5x = 40
\]
Now, divide both sides by 5:
\[
x = 8
\]
So, the x-intercept is \((8, 0)\).
### Y-Intercept
The y-intercept occurs when \(x = 0\). We can find it by substituting \(x = 0\) into the equation:
\[
5(0) - 4y = 40
\]
This simplifies to:
\[
-4y = 40
\]
Now, divide both sides by -4:
\[
y = -10
\]
So, the y-intercept is \((0, -10)\).
### Summary
- X-Intercept: \((8, 0)\)
- Y-Intercept: \((0, -10)\)
### X-Intercept
The x-intercept occurs when \(y = 0\). We can find it by substituting \(y = 0\) into the equation:
\[
5x - 4(0) = 40
\]
This simplifies to:
\[
5x = 40
\]
Now, divide both sides by 5:
\[
x = 8
\]
So, the x-intercept is \((8, 0)\).
### Y-Intercept
The y-intercept occurs when \(x = 0\). We can find it by substituting \(x = 0\) into the equation:
\[
5(0) - 4y = 40
\]
This simplifies to:
\[
-4y = 40
\]
Now, divide both sides by -4:
\[
y = -10
\]
So, the y-intercept is \((0, -10)\).
### Summary
- X-Intercept: \((8, 0)\)
- Y-Intercept: \((0, -10)\)
There are no human answers yet. A form for humans to post answers is coming very soon!