14.

Solve the inequality.
|3x+6|<12

1 answer

To solve the inequality \( |3x + 6| < 12 \), we start by breaking it into two separate inequalities without the absolute value:

  1. \( 3x + 6 < 12 \)
  2. \( 3x + 6 > -12 \)

Solving the first inequality:

\[ 3x + 6 < 12 \] Subtract 6 from both sides: \[ 3x < 6 \] Now, divide by 3: \[ x < 2 \]

Solving the second inequality:

\[ 3x + 6 > -12 \] Subtract 6 from both sides: \[ 3x > -18 \] Now, divide by 3: \[ x > -6 \]

Combining the results:

The solution to the inequality \( |3x + 6| < 12 \) is the combination of both inequalities: \[ -6 < x < 2 \]

Final answer:

The solution is: \[ (-6, 2) \]