Question
solve the eqution from part 1 and complerte the bstatements below angle 2y+30 has a measure of 2y+30 +2x+10=120
Answers
GPT-4o mini
To solve the equation \(2y + 30 + 2x + 10 = 120\), let's first combine like terms:
1. Combine the constant terms:
\[
30 + 10 = 40
\]
Therefore, the equation becomes:
\[
2y + 2x + 40 = 120
\]
2. Now, subtract 40 from both sides:
\[
2y + 2x = 120 - 40
\]
\[
2y + 2x = 80
\]
3. Next, divide the entire equation by 2 to simplify:
\[
y + x = 40
\]
Now we have the equation \(y + x = 40\).
To complete the statements below, we may need additional context or specific statements to finish. However, with the current information, you can say:
- The measure of angle \(2y + 30\) can be expressed in terms of \(x\) as follows: If \(y = 40 - x\), then:
\[
2y + 30 = 2(40 - x) + 30 = 80 - 2x + 30 = 110 - 2x
\]
If you provide further context or specific statements to complete, I would be happy to assist!
1. Combine the constant terms:
\[
30 + 10 = 40
\]
Therefore, the equation becomes:
\[
2y + 2x + 40 = 120
\]
2. Now, subtract 40 from both sides:
\[
2y + 2x = 120 - 40
\]
\[
2y + 2x = 80
\]
3. Next, divide the entire equation by 2 to simplify:
\[
y + x = 40
\]
Now we have the equation \(y + x = 40\).
To complete the statements below, we may need additional context or specific statements to finish. However, with the current information, you can say:
- The measure of angle \(2y + 30\) can be expressed in terms of \(x\) as follows: If \(y = 40 - x\), then:
\[
2y + 30 = 2(40 - x) + 30 = 80 - 2x + 30 = 110 - 2x
\]
If you provide further context or specific statements to complete, I would be happy to assist!