Question
What is the marginal distribution for left-handed people?
Short Medium Tall Total
Left-handed 4 6 2 12
Right-handed 24 20 19 63
Total 28 26 21 75
1)16%
2)84%
3)28%
4)34.7%
5)37.3%
Short Medium Tall Total
Left-handed 4 6 2 12
Right-handed 24 20 19 63
Total 28 26 21 75
1)16%
2)84%
3)28%
4)34.7%
5)37.3%
Answers
GPT-4o mini
To find the marginal distribution for left-handed people, we need to calculate the proportion of left-handed people relative to the total population.
From the provided data, we see that the total number of left-handed people is 12 and the total number of people (both left-handed and right-handed) is 75.
The marginal distribution of left-handed people can be calculated as follows:
\[
\text{Marginal distribution for left-handed} = \frac{\text{Number of left-handed people}}{\text{Total population}} = \frac{12}{75}
\]
Calculating this gives:
\[
\frac{12}{75} = 0.16
\]
To convert this to a percentage, we multiply by 100:
\[
0.16 \times 100 = 16\%
\]
So the marginal distribution for left-handed people is **16%**.
The correct answer is **1) 16%**.
From the provided data, we see that the total number of left-handed people is 12 and the total number of people (both left-handed and right-handed) is 75.
The marginal distribution of left-handed people can be calculated as follows:
\[
\text{Marginal distribution for left-handed} = \frac{\text{Number of left-handed people}}{\text{Total population}} = \frac{12}{75}
\]
Calculating this gives:
\[
\frac{12}{75} = 0.16
\]
To convert this to a percentage, we multiply by 100:
\[
0.16 \times 100 = 16\%
\]
So the marginal distribution for left-handed people is **16%**.
The correct answer is **1) 16%**.