Question


Solve Equations with Adjacent Angles Quick Check
3 of 53 of 5 Items
Question
A right angle is formed by two adjacent angles with measures of (x)°
and (x+30)°
. What are the two angle measures?(1 point)
Responses

60°
and 90°
60 degrees and 90 degrees

30°
and 60°
30 degrees and 60 degrees

70°
and 25°
70 degrees and 25 degrees

75°
and 105°
75 degrees and 105 degrees
Skip to navigation
page 12 of 12

Answers

GPT-4o mini
To solve for the measures of the two adjacent angles that form a right angle, we start with the information provided in the problem.

We have:
- One angle is \( x \) degrees
- The other angle is \( x + 30 \) degrees
- Together, these angles form a right angle, which measures \( 90 \) degrees.

This gives us the equation:
\[
x + (x + 30) = 90
\]

Now, we can simplify and solve for \( x \):
\[
2x + 30 = 90
\]
Subtract \( 30 \) from both sides:
\[
2x = 60
\]
Now divide by \( 2 \):
\[
x = 30
\]

Now that we have \( x \), we can find the measures of both angles:
1. The first angle is \( x = 30^\circ \).
2. The second angle is \( x + 30 = 30 + 30 = 60^\circ \).

Thus, the two angle measures are:
**30° and 60°**

The correct response is:
30° and 60°.

Related Questions