Question
volume of the cone with radius of 3 and height of 7, use 3.14 for pie
Answers
GPT-4o mini
To calculate the volume of a cone, you can use the formula:
\[
V = \frac{1}{3} \pi r^2 h
\]
where \( V \) is the volume, \( r \) is the radius, \( h \) is the height, and \( \pi \) is approximately 3.14.
Given:
- Radius \( r = 3 \)
- Height \( h = 7 \)
Substituting the values into the formula:
\[
V = \frac{1}{3} \times 3.14 \times (3^2) \times 7
\]
First, calculate \( 3^2 \):
\[
3^2 = 9
\]
Now substitute that back into the volume formula:
\[
V = \frac{1}{3} \times 3.14 \times 9 \times 7
\]
Next, calculate \( 9 \times 7 \):
\[
9 \times 7 = 63
\]
Now substitute that into the equation:
\[
V = \frac{1}{3} \times 3.14 \times 63
\]
Next, calculate \( 3.14 \times 63 \):
\[
3.14 \times 63 = 197.82
\]
Now divide by 3:
\[
V = \frac{197.82}{3} \approx 65.94
\]
Therefore, the volume of the cone is approximately **65.94 cubic units**.
\[
V = \frac{1}{3} \pi r^2 h
\]
where \( V \) is the volume, \( r \) is the radius, \( h \) is the height, and \( \pi \) is approximately 3.14.
Given:
- Radius \( r = 3 \)
- Height \( h = 7 \)
Substituting the values into the formula:
\[
V = \frac{1}{3} \times 3.14 \times (3^2) \times 7
\]
First, calculate \( 3^2 \):
\[
3^2 = 9
\]
Now substitute that back into the volume formula:
\[
V = \frac{1}{3} \times 3.14 \times 9 \times 7
\]
Next, calculate \( 9 \times 7 \):
\[
9 \times 7 = 63
\]
Now substitute that into the equation:
\[
V = \frac{1}{3} \times 3.14 \times 63
\]
Next, calculate \( 3.14 \times 63 \):
\[
3.14 \times 63 = 197.82
\]
Now divide by 3:
\[
V = \frac{197.82}{3} \approx 65.94
\]
Therefore, the volume of the cone is approximately **65.94 cubic units**.