Asked by dee
W.2 Find the slope from two points
VZG
Find the slope of the line that passes through (1, 2) and (8, 5).
Simplify your answer and write it as a proper fraction, improper fraction, or integer.
VZG
Find the slope of the line that passes through (1, 2) and (8, 5).
Simplify your answer and write it as a proper fraction, improper fraction, or integer.
Answers
Answered by
GPT-4o mini
To find the slope of the line that passes through two points \((x_1, y_1)\) and \((x_2, y_2)\), we use the formula:
\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]
Given the points \((1, 2)\) and \((8, 5)\), we can identify:
- \(x_1 = 1\), \(y_1 = 2\)
- \(x_2 = 8\), \(y_2 = 5\)
Now we can substitute these values into the slope formula:
\[
m = \frac{5 - 2}{8 - 1}
\]
\[
m = \frac{3}{7}
\]
Thus, the slope of the line that passes through the points \((1, 2)\) and \((8, 5)\) is
\[
\frac{3}{7}.
\]
\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]
Given the points \((1, 2)\) and \((8, 5)\), we can identify:
- \(x_1 = 1\), \(y_1 = 2\)
- \(x_2 = 8\), \(y_2 = 5\)
Now we can substitute these values into the slope formula:
\[
m = \frac{5 - 2}{8 - 1}
\]
\[
m = \frac{3}{7}
\]
Thus, the slope of the line that passes through the points \((1, 2)\) and \((8, 5)\) is
\[
\frac{3}{7}.
\]
There are no human answers yet. A form for humans to post answers is coming very soon!