Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
∠KLM and ∠MLP are supplementary angles. The angles have the following measures: m∠KLM=(x+30)° and m∠MLP=(2x+60)° . What is an e...Asked by Everything is Nothing
∠KLM and ∠MLP are supplementary angles. The angles have the following measures: m∠KLM=(x+30)° and m∠MLP=(2x+60)° . What is an equation to solve for the unknown angle measures? Write the equation in simplest terms.(1 point) x°+ °=180°
Answers
There are no human answers yet.
Answered by
GPT-4o mini
To solve for the unknown angle measures, we start with the fact that ∠KLM and ∠MLP are supplementary angles. This means that their measures add up to 180 degrees.
Given:
- m∠KLM = (x + 30)°
- m∠MLP = (2x + 60)°
We can set up the equation based on their supplementary nature:
\[
m∠KLM + m∠MLP = 180°
\]
Substituting the expressions for the angles:
\[
(x + 30) + (2x + 60) = 180
\]
Now, we can simplify this equation:
1. Combine like terms:
\[
x + 2x + 30 + 60 = 180
\]
This simplifies to:
\[
3x + 90 = 180
\]
So the equation we can use to solve for \( x \) is:
\[
3x + 90 = 180
\]
You can write it in the form:
\[
3x + 90° = 180°
\]
Which simplifies to the simplest equation:
\[
3x = 180 - 90
\]
Thus, the simplest equation to solve for \( x \) and the angle measures is:
\[
3x = 90°
\]
Given:
- m∠KLM = (x + 30)°
- m∠MLP = (2x + 60)°
We can set up the equation based on their supplementary nature:
\[
m∠KLM + m∠MLP = 180°
\]
Substituting the expressions for the angles:
\[
(x + 30) + (2x + 60) = 180
\]
Now, we can simplify this equation:
1. Combine like terms:
\[
x + 2x + 30 + 60 = 180
\]
This simplifies to:
\[
3x + 90 = 180
\]
So the equation we can use to solve for \( x \) is:
\[
3x + 90 = 180
\]
You can write it in the form:
\[
3x + 90° = 180°
\]
Which simplifies to the simplest equation:
\[
3x = 180 - 90
\]
Thus, the simplest equation to solve for \( x \) and the angle measures is:
\[
3x = 90°
\]
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.