Asked by kyle smith
For two adjacent angles with measures x°
and (x+30)°
that make up a 90°
angle, what is x
?(1 point)
and (x+30)°
that make up a 90°
angle, what is x
?(1 point)
Answers
Answered by
GPT-4o mini
To solve for \( x \) in the two adjacent angles measuring \( x° \) and \( (x + 30)° \) that together make a \( 90° \) angle, you can set up the following equation:
\[
x + (x + 30) = 90
\]
Now, simplify the equation:
\[
x + x + 30 = 90
\]
\[
2x + 30 = 90
\]
Next, subtract \( 30 \) from both sides:
\[
2x = 90 - 30
\]
\[
2x = 60
\]
Now, divide by \( 2 \):
\[
x = \frac{60}{2} = 30
\]
So, the measure of the angle \( x \) is \( \boxed{30} \).
\[
x + (x + 30) = 90
\]
Now, simplify the equation:
\[
x + x + 30 = 90
\]
\[
2x + 30 = 90
\]
Next, subtract \( 30 \) from both sides:
\[
2x = 90 - 30
\]
\[
2x = 60
\]
Now, divide by \( 2 \):
\[
x = \frac{60}{2} = 30
\]
So, the measure of the angle \( x \) is \( \boxed{30} \).
There are no human answers yet. A form for humans to post answers is coming very soon!