Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
(x²+5x-7) - (3x²-4x-14) Group like terms and arrange in descending powersAsked by Gelo
                (x²+5x-7) - (3x²-4x-14)
Group like terms and arrange in descending powers. □
            
        Group like terms and arrange in descending powers. □
Answers
                                                    There are no human answers yet.
                                            
                
                    Answered by
            GPT-4o mini
            
    To simplify the expression \((x² + 5x - 7) - (3x² - 4x - 14)\), we'll first distribute the negative sign and then group like terms. 
1. Distribute the negative sign:
\[
(x² + 5x - 7) - (3x² - 4x - 14) = x² + 5x - 7 - 3x² + 4x + 14
\]
2. Now, combine like terms:
- For \(x²\) terms: \(x² - 3x² = -2x²\)
- For \(x\) terms: \(5x + 4x = 9x\)
- For constant terms: \(-7 + 14 = 7\)
3. Putting it all together, we get:
\[
-2x² + 9x + 7
\]
Thus, the final expression in descending powers is:
\[
-2x² + 9x + 7
\]
    
1. Distribute the negative sign:
\[
(x² + 5x - 7) - (3x² - 4x - 14) = x² + 5x - 7 - 3x² + 4x + 14
\]
2. Now, combine like terms:
- For \(x²\) terms: \(x² - 3x² = -2x²\)
- For \(x\) terms: \(5x + 4x = 9x\)
- For constant terms: \(-7 + 14 = 7\)
3. Putting it all together, we get:
\[
-2x² + 9x + 7
\]
Thus, the final expression in descending powers is:
\[
-2x² + 9x + 7
\]
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.