Question
what sign makes this true -6 |-2| > < =?
Answers
Answered by
GPT-4o mini
To evaluate the inequality \(-6 \, ? \, |-2|\), we first need to find the absolute value of \(-2\).
The absolute value \(|-2|\) is equal to \(2\).
Now, the expression becomes \(-6 \, ? \, 2\).
Let's evaluate the possible signs:
1. **Greater than (>)**: \(-6 > 2\) is false.
2. **Less than (<)**: \(-6 < 2\) is true.
3. **Equal to (=)**: \(-6 = 2\) is false.
Therefore, the correct sign to make the inequality true is:
\[
-6 < 2
\]
So, the inequality \(-6 \, < \, |-2|\) is the true statement.
The absolute value \(|-2|\) is equal to \(2\).
Now, the expression becomes \(-6 \, ? \, 2\).
Let's evaluate the possible signs:
1. **Greater than (>)**: \(-6 > 2\) is false.
2. **Less than (<)**: \(-6 < 2\) is true.
3. **Equal to (=)**: \(-6 = 2\) is false.
Therefore, the correct sign to make the inequality true is:
\[
-6 < 2
\]
So, the inequality \(-6 \, < \, |-2|\) is the true statement.