Suppose that the relation G is defined as follows. G = {(0, m), (3, n), (9, 9), (n, 3)) Give the domain and range of G. Write your answers using set notation. ? domain = M range Π

1 answer

To determine the domain and range of the relation G=(0,m),(3,n),(9,9),(n,3), we will extract the first and second elements of the ordered pairs.

Domain: The domain of a relation is the set of all first elements of the ordered pairs. From the pairs in G:

  • First element of (0, m) is 0
  • First element of (3, n) is 3
  • First element of (9, 9) is 9
  • First element of (n, 3) is n

Thus, the domain can be represented as: Domain=0,3,9,n

Range: The range of a relation is the set of all second elements of the ordered pairs. From the pairs in G:

  • Second element of (0, m) is m
  • Second element of (3, n) is n
  • Second element of (9, 9) is 9
  • Second element of (n, 3) is 3

Thus, the range can be represented as: Range=m,n,9,3

Therefore, we can summarize the domain and range of the relation G as follows:

Domain=0,3,9,n Range=m,n,9,3