The equation given for the area
This is a quadratic equation that opens downward, indicating that it has a maximum value. To find the width
In this equation,
Thus, the width at which the maximum area is achieved is
Next, we need to find the corresponding area
So, the maximum area is
Regarding the question about the domain when the maximum range is achieved: the width
However, in the context of the provided answers and the context of asking for the "domain when the maximum range is achieved", it looks like they might be mixing terms.
To succinctly answer the original multiple-choice question regarding when the maximum area is achieved:
- The domain of the widths obtainable would be
(since if were to exceed 20, would not remain a positive number). - The area at the maximum is given as
square yards.
Among the multiple-choice answers, the correct one (the area when the maximum range is achieved) is:
100 square yards
The closest option relevant for domain in terms of the width is not explicitly listed. However, if we're strictly talking about the maximum area being achievable, that answer is indeed not present directly in the options provided.
If using specific choices:
- The main relevant result seems closest to 100 but if considering only about the choices provided (which may potentially correlate with $w$), the critical number would still be 10 yards (the width that gives the maximum area).
So in summary, the relevant interpretations from this would revolve primarily around 10 yards in terms of specifications for width.