Use the image to answer the question.

A coordinate plane's axes range from negative 8 to 0, both by 1-unit increments. Triangle upper X upper Y upper Z and triangle upper X prime upper Y prime upper Z prime are plotted.

Which statement proves that the dilation of ΔXYZ does not pass through the center of dilation?

(1 point)
Responses

XY¯¯¯¯¯¯¯¯ and X′Y′¯¯¯¯¯¯¯¯¯¯¯¯ both have an undefined slope with a center of dilation at (0,0). This proves that the lines are parallel and that the dilation does not pass through the center of dilation.
Modifying above upper X upper Y with bar and Modifying above upper X prime upper Y prime with bar both have an undefined slope with a center of dilation at left parenthesis 0 comma 0 right parenthesis . This proves that the lines are parallel and that the dilation does not pass through the center of dilation.

XY¯¯¯¯¯¯¯¯ has a length of 3 and X′Y′¯¯¯¯¯¯¯¯¯¯¯¯ has a length of 1, which proves that ΔXYZ is a dilation of ΔX′Y′Z′ by a scale factor of 3.
Modifying above upper X upper Y with bar has a length of 3 and Modifying above upper X prime upper Y prime with bar has a length of 1, which proves that triangle upper X upper Y upper Z is a dilation of triangle upper X prime upper Y prime upper Z prime by a scale factor of 3.

X′(−3⋅13,−3⋅13)=X′(−1,−1), Y′(−3⋅13,−6⋅13)=Y′(−1,−2), Z′(−6⋅13,−3⋅13)=Z′(−2,−1).
upper X prime left parenthesis negative 3 times Start Fraction 1 over 3 End Fraction comma negative 3 times Start Fraction 1 over 3 End Fraction right parenthesis equals upper X prime left parenthesis negative 1 comma negative 1 right parenthesis , upper Y prime left parenthesis negative 3 times Start Fraction 1 over 3 End Fraction comma negative 6 times Start Fraction 1 over 3 End Fraction right parenthesis equals upper Y prime left parenthesis negative 1 comma negative 2 right parenthesis , upper Z prime left parenthesis negative 6 times Start Fraction 1 over 3 End Fraction comma negative 3 times Start Fraction 1 over 3 End Fraction right parenthesis equals upper Z prime left parenthesis negative 2 comma negative 1 right parenthesis .

XY¯¯¯¯¯¯¯¯ has a length of 3 and X′Y′¯¯¯¯¯¯¯¯¯¯¯¯ has a length of 1, which proves that ΔX′Y′Z′ is a dilation of ΔXYZ by a scale factor of 13.

1 answer

The statement that proves that the dilation of ΔXYZ does not pass through the center of dilation is:

"XY and X′Y′ both have an undefined slope with a center of dilation at (0,0). This proves that the lines are parallel and that the dilation does not pass through the center of dilation."

This indicates that the two line segments (from triangle XYZ and X'Y'Z') are parallel, which is consistent with the properties of a dilation that does not share a center point with the figures being dilated.