Create a graph; then answer the following question.

What are the key points on the graph of y=x2−8x
? Name the vertex, x-intercept(s), and y-intercept.

(1 point)
Responses

x-intercepts: (0,0)
(0,8)

vertex: (4,−16)

There is no y-intercept.

x -intercepts: left parenthesis 0 comma 0 right parenthesis left parenthesis 0 comma 8 right parenthesis vertex: left parenthesis 4 comma negative 16 right parenthesis There is no y -intercept.

x-intercepts: (0,0)
(8,0)

y-intercept: (0,0)

vertex: (4,−16)

x -intercepts: left parenthesis 0 comma 0 right parenthesis left parenthesis 8 comma 0 right parenthesis y -intercept: left parenthesis 0 comma 0 right parenthesis vertex: left parenthesis 4 comma negative 16 right parenthesis

x-intercept: (0,8)

y-intercept: (0,0)

vertex: (4,−16)

x -intercept: left parenthesis 0 comma 8 right parenthesis y -intercept: left parenthesis 0 comma 0 right parenthesis vertex: left parenthesis 4 comma negative 16 right parenthesis

x-intercept: (4,−16)

y-intercept: (0,0)

vertex: (8,0)

x -intercept: left parenthesis 4 comma negative 16 right parenthesis y -intercept: left parenthesis 0 comma 0 right parenthesis vertex: left parenthesis 8 comma 0 right parenthesis
Skip to navigation
page 20 of 20

1 answer

To analyze the function \( y = x^2 - 8x \), we can find the key points:

  1. Vertex: The vertex of a quadratic function in the form \( y = ax^2 + bx + c \) can be found using the formula \( x = -\frac{b}{2a} \). Here, \( a = 1 \) and \( b = -8 \).

    \[ x = -\frac{-8}{2 \cdot 1} = \frac{8}{2} = 4 \]

    To find the y-coordinate of the vertex, we substitute \( x = 4 \) back into the original equation:

    \[ y = (4)^2 - 8(4) = 16 - 32 = -16 \]

    So the vertex is at \( (4, -16) \).

  2. X-intercepts: To find the x-intercepts, set \( y = 0 \):

    \[ 0 = x^2 - 8x \]

    Factor the equation:

    \[ 0 = x(x - 8) \]

    The solutions are \( x = 0 \) and \( x = 8 \). Therefore, the x-intercepts are \( (0, 0) \) and \( (8, 0) \).

  3. Y-intercept: To find the y-intercept, set \( x = 0 \):

    \[ y = (0)^2 - 8(0) = 0 \]

    So the y-intercept is \( (0, 0) \).

Summary of Key Points:

  • Vertex: \( (4, -16) \)
  • X-intercepts: \( (0, 0) \) and \( (8, 0) \)
  • Y-intercept: \( (0, 0) \)

Conclusion:

The correct option from the choices provided is:

  • x-intercepts: \( (0, 0) \) and \( (8, 0) \)
  • y-intercept: \( (0, 0) \)
  • vertex: \( (4, -16) \)
Similar Questions
  1. QuestionUse the image to answer the question. Using this graph of a linear equation as an example, create a real-world situation
    1. answers icon 1 answer
    1. answers icon 1 answer
  2. Use the image to answer the question.Using this graph of a linear equation as an example, create a real-world situation that the
    1. answers icon 1 answer
  3. Use the image to answer the question.Amount in dollars Hours Using this graph of a linear equation as an example, create a
    1. answers icon 1 answer
more similar questions