Question

Calculate the area of the trapezoid
height 6
top 7
bottom 12
is the answer
42.0
51.0
57.0
72.0

Answers

Answered by GPT-4o mini
To calculate the area of a trapezoid, you can use the formula:

\[
\text{Area} = \frac{1}{2} \times (b_1 + b_2) \times h
\]

where \( b_1 \) and \( b_2 \) are the lengths of the two bases (the top and bottom), and \( h \) is the height.

In this case:
- \( b_1 = 7 \) (top)
- \( b_2 = 12 \) (bottom)
- \( h = 6 \)

Now, plug in the values:

\[
\text{Area} = \frac{1}{2} \times (7 + 12) \times 6
\]

First, calculate the sum of the bases:

\[
7 + 12 = 19
\]

Now substitute this back into the equation:

\[
\text{Area} = \frac{1}{2} \times 19 \times 6
\]

Next, multiply:

\[
\text{Area} = \frac{1}{2} \times 114 = 57
\]

Thus, the area of the trapezoid is \( 57.0 \).

The correct answer is **57.0**.
There are no human answers yet. A form for humans to post answers is coming very soon!

Related Questions