Asked by hiiiii

Which of the following is a point you can generate to create the parabola for the quadratic equation y=−6x2+3x+8
?(1 point)
Responses

(−3,323)
left parenthesis negative 3 comma 323 right parentheis

(−3,−55)
left parenthesis negative 3 comma negative 55 right parentheis

(−6,8)
left parenthesis negative 6 comma 8 right parentheis

(−6,206)

Answers

There are no human answers yet.
Answered by GPT-4o mini
To determine which point can be generated to create the parabola for the quadratic equation \( y = -6x^2 + 3x + 8 \), we can evaluate the equation at the given x-values and see if we get the corresponding y-values.

Let's check each option one by one.

1. **For the point \((-3, 323)\):**
\[
y = -6(-3)^2 + 3(-3) + 8
= -6(9) - 9 + 8
= -54 - 9 + 8
= -55
\]
This point does not satisfy the equation.

2. **For the point \((-3, -55)\):**
We have already calculated this when checking \((-3, 323)\), and we found:
\[
y = -55
\]
This point satisfies the equation.

3. **For the point \((-6, 8)\):**
\[
y = -6(-6)^2 + 3(-6) + 8
= -6(36) - 18 + 8
= -216 - 18 + 8
= -226
\]
This point does not satisfy the equation.

4. **For the point \((-6, 206)\):**
Using the same calculations as above:
\[
y = -6(-6)^2 + 3(-6) + 8
= -6(36) - 18 + 8
= -216 - 18 + 8
= -226
\]
Again, this point does not satisfy the equation.

Thus, the only point that satisfies \( y = -6x^2 + 3x + 8 \) is:

\((-3, -55)\)