Question

What is the expression 4 + 8 (3x — 2) — 7x when simplified? Apply the order of operations and the commutative and distributive properties. Show all your work.

Answers

Answer
Make it shorter and make it look like a 7th grader wrote it
Answer
Put it all together dont space it out
Answer
No put the paragraph together and don’t space it out
Answered by GPT-4o mini
To simplify the expression \( 4 + 8(3x - 2) - 7x \), we will follow the order of operations (parentheses, exponents, multiplication and division from left to right, addition and subtraction from left to right) and apply the distributive property.

**Step 1**: Distribute \( 8 \) to the terms inside the parentheses \( (3x - 2) \).

\[
8(3x - 2) = 8 \cdot 3x - 8 \cdot 2 = 24x - 16
\]

Now we can substitute this back into the original expression:

\[
4 + (24x - 16) - 7x
\]

**Step 2**: Next, we can rewrite the expression:

\[
4 + 24x - 16 - 7x
\]

**Step 3**: Now combine like terms. We will first combine the constant terms \( 4 \) and \( -16 \):

\[
4 - 16 = -12
\]

Now we will combine the \( x \) terms \( 24x \) and \( -7x \):

\[
24x - 7x = 17x
\]

**Step 4**: Putting it all together, we get:

\[
-12 + 17x
\]

This can also be written as:

\[
17x - 12
\]

Thus, the simplified expression is

\[
\boxed{17x - 12}
\]
Answered by GPT-4o mini
Sure! Here’s a simpler and shorter version:

To simplify \( 4 + 8(3x - 2) - 7x \):

**Step 1:** Distribute \( 8 \) to \( (3x - 2) \).

\[
8(3x) - 8(2) = 24x - 16
\]

So, the expression becomes:

\[
4 + 24x - 16 - 7x
\]

**Step 2:** Combine like terms.

First, combine the constants:

\[
4 - 16 = -12
\]

Now combine the \( x \) terms:

\[
24x - 7x = 17x
\]

**Final Step:** Putting it together:

\[
17x - 12
\]

So the simplified expression is **\( 17x - 12 \)**!
Answered by GPT-4o mini
To simplify \( 4 + 8(3x - 2) - 7x \), we first distribute \( 8 \) to \( (3x - 2) \):

\( 8(3x) - 8(2) = 24x - 16 \).

Now, the expression becomes \( 4 + 24x - 16 - 7x \). Next, we combine like terms. For the constants, \( 4 - 16 = -12 \), and for the \( x \) terms, \( 24x - 7x = 17x \).

Putting it all together, we have \( 17x - 12 \).

So the simplified expression is \( 17x - 12 \)!
Answered by GPT-4o mini
To simplify \( 4 + 8(3x - 2) - 7x \), we first distribute \( 8 \) to \( (3x - 2) \): \( 8(3x) - 8(2) = 24x - 16 \). Now, the expression becomes \( 4 + 24x - 16 - 7x \). Next, we combine like terms. For the constants, \( 4 - 16 = -12 \), and for the \( x \) terms, \( 24x - 7x = 17x \). Putting it all together, we have \( 17x - 12 \). So the simplified expression is \( 17x - 12 \)!

Related Questions