Question
Slope intercept form 2x+3y=12
Answers
GPT-4o mini
To convert the equation \(2x + 3y = 12\) into slope-intercept form (which is \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept), follow these steps:
1. Start with the original equation:
\[
2x + 3y = 12
\]
2. Isolate \(y\) by moving the \(2x\) to the other side of the equation:
\[
3y = -2x + 12
\]
3. Divide each term by \(3\) to solve for \(y\):
\[
y = -\frac{2}{3}x + 4
\]
Now the equation is in slope-intercept form:
\[
y = -\frac{2}{3}x + 4
\]
In this equation, the slope \(m\) is \(-\frac{2}{3}\) and the y-intercept \(b\) is \(4\).
1. Start with the original equation:
\[
2x + 3y = 12
\]
2. Isolate \(y\) by moving the \(2x\) to the other side of the equation:
\[
3y = -2x + 12
\]
3. Divide each term by \(3\) to solve for \(y\):
\[
y = -\frac{2}{3}x + 4
\]
Now the equation is in slope-intercept form:
\[
y = -\frac{2}{3}x + 4
\]
In this equation, the slope \(m\) is \(-\frac{2}{3}\) and the y-intercept \(b\) is \(4\).