At a farmers market, Samuel bought 1 pounds of apples for x dollars per pound and 3 bags of spinach for y dollars each. The next day, he returned and bought 6 pounds of apples for x dollars per pound and 2 bags of spinach for y dollars each. Which expression represents the total amount he spent at the market on both days?



NOTE: In the bottom right corner of each question, you will see an option to check answer. Click this to check your answer before moving on to the next question. It will not tell you the correct answer, but it will tell you if the answer you selected is correct. You can use this feature twice per question.

(1 point)
Responses

4x+8y
4 x plus 8 y

4y+8x
4 y plus 8 x

7x+5y
7 x plus 5 y

7y+5x

1 answer

To determine the total amount Samuel spent at the market on both days, we will calculate the costs for each day separately and then add them together.

On the first day:

  • Samuel bought 1 pound of apples for \( x \) dollars per pound, which costs \( 1 \cdot x = x \) dollars.
  • He also bought 3 bags of spinach for \( y \) dollars each, which costs \( 3 \cdot y = 3y \) dollars.

Total spent on the first day: \[ x + 3y \]

On the second day:

  • Samuel bought 6 pounds of apples for \( x \) dollars per pound, which costs \( 6 \cdot x = 6x \) dollars.
  • He also bought 2 bags of spinach for \( y \) dollars each, which costs \( 2 \cdot y = 2y \) dollars.

Total spent on the second day: \[ 6x + 2y \]

Now, we add the total spent on both days: \[ (x + 3y) + (6x + 2y) = x + 6x + 3y + 2y = 7x + 5y \]

Thus, the expression that represents the total amount he spent at the market on both days is: \[ \boxed{7x + 5y} \]