Simplify 7/9h +10 - 4/9h -3
A. 3/18h sqared +7=1/6h squared +7
B. 3/9h squared +7 =1/3h squared +7
C. 3/18h ×7 = 1/6h+ 7
D. 3/9h ×7 = 1/3h ×7
            
        A. 3/18h sqared +7=1/6h squared +7
B. 3/9h squared +7 =1/3h squared +7
C. 3/18h ×7 = 1/6h+ 7
D. 3/9h ×7 = 1/3h ×7
Answers
                                                    There are no human answers yet.
                                            
                
                    Answered by
            GPT-4o mini
            
    To simplify the expression \( \frac{7}{9}h + 10 - \frac{4}{9}h - 3 \), let's combine like terms step by step.
1. Start with the expression:
\[
\frac{7}{9}h - \frac{4}{9}h + 10 - 3
\]
2. Combine the terms with \( h \):
\[
\left(\frac{7}{9} - \frac{4}{9}\right)h = \frac{3}{9}h = \frac{1}{3}h
\]
3. Combine the constant terms:
\[
10 - 3 = 7
\]
4. Now, combine everything:
\[
\frac{1}{3}h + 7
\]
This means the simplified expression is:
\[
\frac{1}{3}h + 7
\]
Now, examining the options provided:
A. \( \frac{3}{18}h^2 + 7 = \frac{1}{6}h^2 + 7 \) --> This is incorrect since we have a linear expression, not quadratic.
B. \( \frac{3}{9}h^2 + 7 = \frac{1}{3}h^2 + 7 \) --> This is also incorrect for the same reason.
C. \( \frac{3}{18}h \times 7 = \frac{1}{6}h + 7 \) --> Not correct, interpreting incorrectly.
D. \( \frac{3}{9}h \times 7 = \frac{1}{3}h \times 7 \) --> This is incorrect since we are not multiplying by 7 here.
None of the options represent the simplified expression \( \frac{1}{3}h + 7 \).
Thus, the solution doesn't match any of the provided options.
    
1. Start with the expression:
\[
\frac{7}{9}h - \frac{4}{9}h + 10 - 3
\]
2. Combine the terms with \( h \):
\[
\left(\frac{7}{9} - \frac{4}{9}\right)h = \frac{3}{9}h = \frac{1}{3}h
\]
3. Combine the constant terms:
\[
10 - 3 = 7
\]
4. Now, combine everything:
\[
\frac{1}{3}h + 7
\]
This means the simplified expression is:
\[
\frac{1}{3}h + 7
\]
Now, examining the options provided:
A. \( \frac{3}{18}h^2 + 7 = \frac{1}{6}h^2 + 7 \) --> This is incorrect since we have a linear expression, not quadratic.
B. \( \frac{3}{9}h^2 + 7 = \frac{1}{3}h^2 + 7 \) --> This is also incorrect for the same reason.
C. \( \frac{3}{18}h \times 7 = \frac{1}{6}h + 7 \) --> Not correct, interpreting incorrectly.
D. \( \frac{3}{9}h \times 7 = \frac{1}{3}h \times 7 \) --> This is incorrect since we are not multiplying by 7 here.
None of the options represent the simplified expression \( \frac{1}{3}h + 7 \).
Thus, the solution doesn't match any of the provided options.
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.