Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Jenny is making popcorn the recipe calls for 1/2 cup of butter, 3 tablespoons of kernels in 1 teaspoon of salt. If she is is 10...Question
                Jennie is making popcorn. The recipe calls for  1/2
cup of butter, 3 tablespoons of kernels, and 1 teaspoon of salt. If she uses 10 tablespoons of kernels, how much butter does she need? Round your answer to the nearest hundredth. (1 point)
Responses
1.67
1.67
3.33
3.33
1.50
1.50
1.66
            
        cup of butter, 3 tablespoons of kernels, and 1 teaspoon of salt. If she uses 10 tablespoons of kernels, how much butter does she need? Round your answer to the nearest hundredth. (1 point)
Responses
1.67
1.67
3.33
3.33
1.50
1.50
1.66
Answers
                                                    There are no human answers yet.
                                            
                
                    Answered by
            GPT-4o mini
            
    To find out how much butter Jennie needs when using 10 tablespoons of kernels, we can set up a proportion based on the original recipe.
The original recipe calls for:
- \( \frac{1}{2} \) cup of butter
- 3 tablespoons of kernels
Now, let’s express \( \frac{1}{2} \) cup of butter in tablespoons, since there are 16 tablespoons in a cup:
\[
\frac{1}{2} \text{ cup} = \frac{1}{2} \times 16 \text{ tablespoons} = 8 \text{ tablespoons}
\]
Now, we have the following proportions:
- 8 tablespoons of butter for 3 tablespoons of kernels.
To find out how much butter is needed for 10 tablespoons of kernels, we can set up the proportion:
\[
\frac{8 \text{ tablespoons of butter}}{3 \text{ tablespoons of kernels}} = \frac{x \text{ tablespoons of butter}}{10 \text{ tablespoons of kernels}}
\]
Now we can cross-multiply to solve for \( x \):
\[
8 \times 10 = 3 \times x
\]
This simplifies to:
\[
80 = 3x
\]
Now, divide both sides by 3 to isolate \( x \):
\[
x = \frac{80}{3} \approx 26.67 \text{ tablespoons of butter}
\]
Now we convert this back to cups (since there are 16 tablespoons in a cup):
\[
\frac{26.67}{16} \approx 1.67 \text{ cups of butter}
\]
Thus, if Jennie uses 10 tablespoons of kernels, she will need approximately **1.67 cups of butter.**
So the correct response is:
**1.67**
    
The original recipe calls for:
- \( \frac{1}{2} \) cup of butter
- 3 tablespoons of kernels
Now, let’s express \( \frac{1}{2} \) cup of butter in tablespoons, since there are 16 tablespoons in a cup:
\[
\frac{1}{2} \text{ cup} = \frac{1}{2} \times 16 \text{ tablespoons} = 8 \text{ tablespoons}
\]
Now, we have the following proportions:
- 8 tablespoons of butter for 3 tablespoons of kernels.
To find out how much butter is needed for 10 tablespoons of kernels, we can set up the proportion:
\[
\frac{8 \text{ tablespoons of butter}}{3 \text{ tablespoons of kernels}} = \frac{x \text{ tablespoons of butter}}{10 \text{ tablespoons of kernels}}
\]
Now we can cross-multiply to solve for \( x \):
\[
8 \times 10 = 3 \times x
\]
This simplifies to:
\[
80 = 3x
\]
Now, divide both sides by 3 to isolate \( x \):
\[
x = \frac{80}{3} \approx 26.67 \text{ tablespoons of butter}
\]
Now we convert this back to cups (since there are 16 tablespoons in a cup):
\[
\frac{26.67}{16} \approx 1.67 \text{ cups of butter}
\]
Thus, if Jennie uses 10 tablespoons of kernels, she will need approximately **1.67 cups of butter.**
So the correct response is:
**1.67**
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.