Asked by sarah
The lengths QR, RP, and PQ in triangle PQR are often denoted p, q, and r, respectively.
What do the formulas 1/2 pq sinR and 1/2 qr sin P mean? After you justify the
equation 1/2 pq sinR = 1/2 qr sin P, simplify it to a familiar form.
What do the formulas 1/2 pq sinR and 1/2 qr sin P mean? After you justify the
equation 1/2 pq sinR = 1/2 qr sin P, simplify it to a familiar form.
Answers
Answered by
Reiny
The formulas represent the area of the triangle
Did you want an actual proof of the formula?
Hint: draw a perpendicular from P to QR, call it h
take sinR, then find the area by (1/2)base*height.
Did you want an actual proof of the formula?
Hint: draw a perpendicular from P to QR, call it h
take sinR, then find the area by (1/2)base*height.
Answered by
sarah
How do I actually proof the formula?
Answered by
Reiny
ok, follow my steps above
you now have a right-angled triangle with a height of h
sin R = h/PR = h/q
h = qsin R
Isn't the area of the triangle (1/2)(base)h
= (1/2)QRh
= (1/2)p(qsin R)
= (1/2)pq sin R as requested.
dropping perpendiculars from R and Q you can prove in the same way that
area = (1/2)rq sinP and (1/2)rpsinQ
you now have a right-angled triangle with a height of h
sin R = h/PR = h/q
h = qsin R
Isn't the area of the triangle (1/2)(base)h
= (1/2)QRh
= (1/2)p(qsin R)
= (1/2)pq sin R as requested.
dropping perpendiculars from R and Q you can prove in the same way that
area = (1/2)rq sinP and (1/2)rpsinQ
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.